OPTIMALISASI MITIGASI BAHAYA GEMPABUMI MELALUI PENYULUHAN RUMAH TAHAN GEMPA DI KABUPATEN MAJENE
Abstract
Keywords
Full Text:
PDFReferences
Ahadian, E. R., dan Tuhuteru, E. (2020). Evaluasi Bangunan Sederhana Tahan Gempa. Jurnal SIPIL sains, 10(1).
Bialas, J., Oommen, T., Rebbapragada, U., dan Levin, E. (2016). Object-based classification of earthquake damage from high-resolution optical imagery using machine learning. Journal of Applied Remote Sensing, 10(3), 036025-036025.
Breysse, D., & Balayssac, J. P. (2018). Strength assessment in reinforced concrete structures: from research to improved practices. Construction and Building Materials, 182, 1-9.
Boen, T. (2009). Dasar-Dasar Membangun Bangunan Tembokan Tahan Gempa, Bahan Pelatihan Fasilitator Pembangunan Perumahan, PUPR dan JICA. Jakarta.
Boen, T. (2001). Impact of Earthquake on School Buildings in Indonesia, UNCRD International Workshop and Symposium: Earthquake Safer World in the 21st Century, Kobe 29-31 January 2001.
Dasar, A., dan Patah, D. (2022). Sosialisasi Membangun Rumah Sederhana Tahan Gempa Untuk Para Tukang Di Desa Mekkatta Kecamatan Malunda, Majene-Sulawesi Barat. Panrita Abdi-Jurnal Pengabdian pada Masyarakat, 6(4), 753-760.
Dasar, A., Patah, D., dan Nurdin, A. (2022). Pelatihan Membaca Gambar Teknik Untuk Tukang Dalam Upaya Peningkatan Kualitas Bangunan Di Kabupaten Majene. Jurnal Pengabdian Siliwangi, 8(2), 43-51
Didier, M., Baumberger, S., Tobler, R., Esposito, S., Ghosh, S., dan Stojadinovic, B. (2017). Improving post-earthquake building safety evaluation using the 2015 Gorkha, Nepal, Earthquake rapid visual damage assessment data. Earthquake Spectra, 33(1), 415-438.
Goulias, D. G., Cafiso, S., Di Graziano, A., Saremi, S. G., dan Currao, V. (2020). Condition assessment of bridge decks through ground-penetrating radar in bridge management systems. Journal of performance of constructed facilities, 34(5), 04020100.
Kim, T., Song, J., dan Kwon, O. S. (2020). Pre‐and post‐earthquake regional loss assessment using deep learning. Earthquake engineering dan Structural Dynamics, 49(7), 657-678.
Marshall, J.D., Jaiswal, K., Gould, N., Turner, F.; Lizundia, B., Barnes, J.C. Post-earthquake building safety inspection: Lessons from the canterbury, New Zealand, earthquakes. Earthq. Spectra. 2013, 29, 1091–1107.
Naito, S., Tomozawa, H., Mori, Y., Nagata, T., Monma, N., Nakamura, H., ... dan Shoji, G. (2020). Building-damage detection method based on machine learning utilizing aerial photographs of the Kumamoto earthquake. Earthquake Spectra, 36(3), 1166-1187.
Pedoman Teknis Rumah dan Bangunan Gedung Tahan Gempa dilengkapi dengan Metode dan Cara Perbaikan kerusakan, Juni 2006, Direktorat Jenderal Cipta Karya, Jakarta.
SNI 1726-2019. Tata Cara Perencanaan Tahan Gempa Untuk Struktur Bangunan Gedung Dan Non Gedung, 2019, Badan Standar Nasional Indonesia, Jakarta.
SNI 2847-2019. Persyaratan Beton Struktural untuk Bangunan Gedung, 2019, Badan Standar Nasional Indonesia, Jakarta.
Stepinac, M., dan Gašparović, M. (2020). A review of emerging technologies for an assessment of safety and seismic vulnerability and damage detection of existing masonry structures. Applied Sciences, 10(15), 5060.
Wilde, K., dan Rucka, M. (2015). Ultrasound monitoring for evaluation of damage in reinforced concrete. Bulletin of the Polish Academy of Sciences: Technical Sciences, 65-75.
Yavari, S., Chang, S. E., dan Elwood, K. J. (2010). Modeling post-earthquake functionality of regional health care facilities. Earthquake Spectra, 26(3), 869-892.
Zhang, Y., Burton, H. V., Sun, H., dan Shokrabadi, M. (2018). A machine learning framework for assessing post-earthquake structural safety. Structural safety, 72, 1-16.
DOI: https://doi.org/10.33373/jmb.v7i2.5736
Refbacks
- There are currently no refbacks.
License URL: https://creativecommons.org/licenses/by/4.0/
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.