MATHEMATICAL SELF-EFFICACY OF STUDENTS IN COOPERATIVE LEARNING WITH TWO STAY TWO STRAY TECHNIQUE

Habibullah¹, Puspitarani², H. Prasetyo³
¹,²Mathematics Education, Yogyakarta State University, Yogyakarta
³Mathematics Education, State Junior High School 5 Yogyakarta, Yogyakarta
e-mail: ¹habibullahpps17uny@gmail.com, ²ranipuspita579@gmail.com, ³hari.may212@gmail.com

Abstract. This research is a classroom action research that aimed to improve the mathematics learning process in terms of students' self-efficacy through the application of cooperative learning ‘two stay two stray’ technique. The subjects of this study were 32 students from one of the junior high schools in Yogyakarta. The data collection technique were carried out by using a self-efficacy questionnaire sheet consisted of 24 favorable and unfavorable statements. The results showed an increase of the average value of student mathematics learning outcomes based on the category of self-efficacy. Students who had the high level of self-efficacy are having an average increase of 50.25, then other students who had the average level of self-efficacy are experiencing an average increase of 42.75, and students who had a low level of self-efficacy are having increased grades an average of 54.62. Therefore, it can be concluded that the application of cooperative learning two stay two stray technique can improve the learning process and improve students' mathematical self-efficacy.

Keywords: Self-Efficacy, Cooperative Learning, Two Stay Two Stray Technique

Introduction

Education should not only met the curriculum target of the school, but also require an understanding process for students. One of the subjects that demands the understanding toward the students is mathematics. As a subject, mathematics is represented as a very important thing which is mastered by all students. Hence, it should have received serious mathematical learning so that the quality of mathematics learning can be improved. To realize it, the teacher should be able to create a conducive climate in learning mathematics in the classroom. Thus, the students' mathematics learning outcomes could achieved the expected learning completeness.

In addition to the cognitive aspects, another factor namely effective aspect, is not less important in influencing students' mathematics learning success. One of affective aspect that is expected to have a significant influence on the learning, is self-efficacy (Schunk, 2012). In
Habibullah, Puspitarani & Prasetyo; Mathematical Self-Efficacy Of Students

line with the opinion of Zimmerman, Bonner, & Kovach (1996) and Slavin (2006), it stated that self-efficacy as an important variable which must be owned by students. Students who have high self-efficacy tend to use cognitive learning strategies, so that it impacts on good learning outcomes.

Bandura (1994) explained that self-efficacy is a person's belief about their ability to perform an action that is designated through performance that has an influence on events in their lives. Meanwhile, Santrock (2018) stated that self-efficacy is one's belief in mastering certain situations and producing positive outcomes. Referring to this opinion, self-efficacy is said to be a belief in the ability possessed to achieve certain goals and efforts made for the achievement of good results.

Related to self-efficacy in mathematics, Pajares & Graham (1999) stated that self-efficacy is a student's belief in their abilities, successes, and persistence in learning and completing all mathematical tasks as well as confidence in the benefits of mathematics in daily life. As Caprara, Vecchione, Alessandri, Gerbino, & Barbaranelli (2011) and Carroll et al. (2009) who explained that there is a significant relationship between self-efficacy and student learning achievement. These results indicate that if the self-efficacy is good, then mathematics learning achievement of students will also be good, and vice versa.

Cera, Mancini, & Antonietti (2013) defined self-efficacy as a person's belief in the ability he has in increasing motivation, hope, cognitive power and actions needed to carry out a task. Furthermore, Ghufron & Risnawita (2014) defined self-efficacy as one aspect of self-knowledge that is very influential in everyday human life. It is because of the self-efficacy involved does influence a person in the actions that will be taken to achieve the goals, including the estimated events to be faced.

Bandura (1994) said that one's success in self-efficacy can be grown in four ways. There are namely the experience of success, the experience of others, social persuasion and physical also emotional conditions. According to Hodges & Murphy (2009) the experience of success refers to the previous experience of success, success in working on a task will build confidence while failure will weaken self-efficacy. The experience of others who succeed in doing similar tasks can increase self-efficacy while the failure of others can reduce self-efficacy. Social persuasion is usually needed because of the convenience that can be dispensed with, one must see who the persuader has the ability in providing meaningful feedback. Physical conditions, pain, emotions, and fatigue affect self-efficacy. Meanwhile, Loo & Choy (2013) stated that the experience of success is the main source of achievement of students' academic mathematical grades.

Richard & Kilcher (2010) stated that Self efficacy is beliefs held by individuals that their effort will be successful and caused by personal effort rather than by external factors or luck. Meanwhile, McCoach, Gable, & Madura (2013) explained that self efficacy can be defined as one’s perception of his/her ability (i.e confidence) to successfully perform a task or behavior. Dimopoulou (2012) said that mathematical self-efficacy is an individual's confidence and confidence in the ability to complete a given mathematical task and how confidence in following mathematics learning.

In connection with the matter above, the expected learning process is the learning that able to make students more active in overall. The matter which actively focused are in expressing opinions and communicating their thoughts whether with the teacher, peers, and
also the mathematics material itself. But in reality, the learning process has not been fully student-centered. The learning process which happened in schools is still largely teacher-centered, because the students' self-efficacy during the learning process is still very low. It can be seen that students feel embarrassed to answer when the teacher asks questions. Also, the students are embarrassed to present their answers in front of the class because they feel afraid if they got the wrong answer. Therefore this study aims to improve the process of learning mathematics which in this case is the mathematical self-efficacy of students. One alternative learning is cooperative learning two stay, two stray technique. This learning technique consists of four people in each group, where two students have their task that is ‘two stays’. This term means to those two students who stay in charge of providing information and explanations about the steps to solve the unknown problem by students who come. Then, the other two students who have task called ‘two stray’, are in charge of looking for the information needed. Kagan & Kagan (2009) stated that the ‘two stay, two stray’ technique provides an opportunity for each group to provide results and information with other groups.

Research Method

This research was classroom action research with the number of research subjects were 32 students from one junior high school in Yogyakarta. They were consisted of 14 male students and 18 female students who have heterogeneous abilities. This research was conducted in two cycles, which each cycle consisted of three times of treatment and test. Each cycle has four stages namely, planning, implementation, observation, and reflection.

The data obtained in this study were arranged systematically so that it was more easily interpreted, so data analysis must be done during and after data collection. The data analysis technique used in this study was descriptive statistics. Descriptive statistics was used to analyze data by describing the data set that has been obtained, then presented in the form of tables, graphs, diagrams, or through the calculation of data distribution that is looked for the average value (mean), percentage, or standard deviation. In addition, descriptive statistics can also be made to make comparisons by comparing the average sample data or population. The range of scores and scale criteria about self-efficacy can be seen in the following Table 1.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Kriteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \leq \mu - 1,5\sigma$</td>
<td>Very Low</td>
</tr>
<tr>
<td>$\mu - 1,5\sigma < X \leq \mu - 0,5\sigma$</td>
<td>Low</td>
</tr>
<tr>
<td>$\mu - 0,5\sigma < X \leq \mu + 0,5\sigma$</td>
<td>Medium</td>
</tr>
<tr>
<td>$\mu + 0,5\sigma < X \leq \mu + 1,5\sigma$</td>
<td>High</td>
</tr>
<tr>
<td>$X > \mu + 1,5\sigma$</td>
<td>Very High</td>
</tr>
</tbody>
</table>

Information:

X : Total questionnaire score

μ : Ideal average $[(\text{maximum score} + \text{minimum score})/2]$

σ : Ideal standard deviation $[(\text{maximum score} - \text{minimum score})/6]$
Result And Discussion

The action carried out in this study was cooperative learning with two stay two stray technique. This learning was presented in two cycles; included eight meetings, while the allocation of time in this study was two meetings in one week with each meeting 2 x 40 minutes.

Based on observations made during the first cycle, the two stay two stray cooperative learning process has not yet implemented properly. However, in each meeting, the teacher tried to improve the actions that he did. There were teacher's actions which need to be corrected as follows:

1. At the first meeting the teacher has not conveyed the learning objectives.
2. The teacher lacks apperception and motivation to build students' curiosity about the material to be studied.
3. The teacher has not been able to set the condition the class well, especially during the student displacement process.
4. The teacher sometimes did not give a comprehension test at the end of the learning activity as well as in the first and second meetings.
5. Teachers have not been able to arrange time well, so there were still learning activities that have not been carried out.

Meanwhile, based on observations from each meeting in the second cycle the overall process of cooperative learning two stay two stray technique has been going well. The teacher activities that have been carried out are as follows:

1. The teacher has well-conveyed about the learning objectives which would be achieved at each meeting.
2. The teacher has expressed apperception and give motivation by building the students' curiosity about the material being studied so that students looked more enthusiastic in learning.
3. The teacher was able to set the students’ condition well, so that during the transferring process, there were no more noise and commotion in the classroom.
4. The teacher has given individual comprehension tests to students, except at the fifth meeting, so the teacher is capable to know the extent of student understanding of the material that has been learned.
5. The teacher has been able to manage time efficiently, so that all learning activities can be carried out well.

In addition, based on daily tests I and daily tests II obtained by students, the increase in students' self-efficacy can also be seen by using average analysis. The Improvement in average mathematics learning outcomes in terms of students' level of self-efficacy can be seen in the Table 2 below.

<table>
<thead>
<tr>
<th>Score</th>
<th>Daily Tests I</th>
<th>Daily Tests II</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>36.25</td>
<td>86.5</td>
<td>High</td>
</tr>
<tr>
<td>Average</td>
<td>43.69</td>
<td>86.44</td>
<td>Medium</td>
</tr>
<tr>
<td>Average</td>
<td>32.38</td>
<td>87</td>
<td>Low</td>
</tr>
</tbody>
</table>
Based on Table 2, it can be seen that the average value of student mathematics learning outcomes based on the category of self-efficacy level has increased from daily tests I to daily tests II. For the students who got the high level of self-efficacy increased by 50.25, then for another students who got the level of self-efficacy that is increasing by 42.75, while for students who got the low level of self-efficacy also increased by 54.62.

As the improvements occurred from the activities of teachers and students were well as improvements to student learning outcomes, thus, it can be said that cooperative learning two stay two stray technique is one of the alternatives. This technique can create a conducive learning environment by establishing good communication also interaction between teachers and students, so that it can improve the student’s learning outcomes in mathematics. This statement is supported by the research of Ryan, Bordoloi, & Harrison (2000) who said that cooperative learning has a positive and significant effect on students' self-efficacy in mathematics.

Conclusion And Suggestion

Based on the improvement that occurred in students' mathematics learning processes and outcomes, as in terms of students' level of self-efficacy in each evaluation that has been carried out, it can be concluded that students' mathematical self-efficacy can be improved through the application of cooperative learning with two stay two stray technique.

In the implementation of the actions in this study there are some weaknesses which experienced by students, observers, and researchers themselves. In the implementation of the action, the teacher has not been able to manage time properly so that sometimes not all activities in the learning implementation plan can be carried out. Then, it effects the learning process not yet carried out as expected. Furthermore, when it is viewed from students, they have not be able to set their condition by themselves well so that at the time of displacement, both into the original group and into the combined group there was noise in the classroom. While the observer has difficulty in deciphering the observations on the observation sheet, this happens because there is no clear descriptor to be used as an observer's guide when observing the activities of the teacher and students in implementing the cooperative learning process of two stay two stray technique so that the data about the activity has not been so optimal.

References

