KLASIFIKASI RESIKO ERGONOMI MENGGUNAKAN ALGORITMA NAIVE BAYES: BERDASARKAN METODOLOGI QUICK EXPOSURE CHECK (QEC)

Muhammad Ilham Adelino, Mohammad Farid, Meldia Fitri

Abstract


This research examines the application of machine learning in forecasting and categorizing ergonomic risk levels. Nonetheless, recent research on the integration of Naïve Bayes machine learning with ergonomics remains limited, particularly concerning the Quick Exposure Check (QEC) technique. This study aims to categorize ergonomic risk levels and evaluate the accuracy of classification through machine learning techniques. The employed model is the Naïve Bayes algorithm, grounded in the Quick Exposure Check (QEC) methodology. Data were gathered from evaluations of body posture and occupational characteristics, including strength and duration, and subsequently classified by risk level. The findings of this investigation indicated a total accuracy of 99.00% ± 1.41%, with a micro-average of 99.01%. This degree of accuracy is within the high category. The model exhibits flawless precision and recall for the Medium and High-risk categories, and a recall rate of 93.33% for the Low risk. Misclassification occurred just in a limited number of low-risk instances that were inaccurately classified as medium, suggesting a conservative bias in the evaluation. These results suggest that the model may serve as a dependable tool for ergonomic risk classification, particularly in reliably identifying high risk

Keywords


ergonomics; machine learning; naïve bayes; QEC.

Full Text:

PDF

References


Adelino, M., Zadry, H., & Susanti, L. (2024). Contemporary trends in human factors and ergonomics within engineering research. Jurnal Teknik Industri, 26(1), 61-76. https://doi.org/10.9744/jti.26.1.61-76

Adrian, I., Miloșan, I., Senchetru, D., Machedon-Pisu, T., Ispășoiu, A., & Meiţă, C. (2021). Study on the application of the QEC (Quick Exposure Check) on the ergonomic risks assessment in the industrial field. Matec Web of Conferences, 343, 10023. https://doi.org/10.1051/matecconf/202134310023

Afma, V.M., & Widodo, B.W. (2020). Perancangan alat bantu pengulitan kambing menggunakan metode REBA (Rapid Entire Body Assessment) untuk mengurangi MSDs. PROFISIENSI: Jurnal Program Studi Teknik Industri, 8(1), 1-6. https://doi.org/10.33373/profis.v8i1.2482.

Ahmed, Z., Issac, B., & Das, S. (2024). Ok-NB: an enhanced OPTICS and k-Naive Bayes classifier for imbalance classification with overlapping. IEEE Access, 12, 57458-57477. https://doi.org/10.1109/access.2024.3391749

Amalia, A. & Jannah, V. (2024). Evaluasi resiko ergonomi postur pekerja pencelupan batik menggunakan Rapid Upper Limb Assessment dan Quick Exposure Check di UKM Batik Pasha. JISI: Jurnal Integrasi Sistem Industri, 11(1), 135. https://doi.org/10.24853/jisi.11.1.135-144

Chaharaghran, F., Tabatabaei, S., & Rostamzadeh, S. (2022). The impact of noise exposure and work posture on job stress in a food company. Work, 73(4), 1227-1234. https://doi.org/10.3233/wor-210872

Estrada-Muñoz, C., Madrid-Casaca, H., Salazar-Sepúlveda, G., Contreras-Barraza, N., Iturra-González, J., & Vega-Muñoz, A. (2022). Musculoskeletal symptoms and assessment of ergonomic risk factors on a coffee farm. Applied Sciences, 12(15), 7703. https://doi.org/10.3390/app12157703

Febrianti, D., Achiraeniwati, E., & Rejeki, Y. (2023). Pengukuran risiko kerja menggunakan metode Quick Exposure Checklist (QEC) di penggilingan padi H. Ondo Ciwaruga. Bandung Conference Series Industrial Engineering Science, 3(2), 559-566. https://doi.org/10.29313/bcsies.v3i2.8837

Hanumegowda, P. & Sakthivel, G. (2022). Prediction of work-related risk factors among bus drivers using machine learning. International Journal of Environmental Research and Public Health, 19(22), 15179. https://doi.org/10.3390/ijerph192215179

Khoshakhlagh, A., Majdabadi, M., & Yazdanirad, S. (2022). The impact of ergonomic-educational interventions on reduction of musculoskeletal symptoms among employees of oil and gas installations in Iran. Work, 71(3), 651-660. https://doi.org/10.3233/wor-205231

Liao, L., Liao, K., Wei, N., Ye, Y., Li, L., & Wu, Z. (2023). A holistic evaluation of ergonomics application in health, safety, and environment management research for construction workers. Safety Science, 165, 106198. https://doi.org/10.1016/j.ssci.2023.106198

Lin, S., Tsai, C., Liu, X., Wu, Z., & Zeng, X. (2022). Effectiveness of participatory ergonomic interventions on musculoskeletal disorders and work ability among young dental professionals: a cluster-randomized controlled trail. Journal of Occupational Health, 64(1). https://doi.org/10.1002/1348-9585.12330

Mariawati, A., Herlina, L., & Wicaksana, N. (2023). Measurement of work posture score using Rapid Upper Limb Assessment and Quick Exposure Check in tofu industry. Jurnal Teknik Industri, 13(1), 69-74. https://doi.org/10.25105/jti.v13i1.17517

Mokhtarinia, H., Abazarpour, S., & Gabel, C. (2020). Validity and reliability of the persian version of the Quick Exposure Check (QEC) in Iranian construction workers. Work, 67(2), 387-394. https://doi.org/10.3233/wor-203288

Puspasari, H., Mustaqim, I., Utami, A., Syalevi, R., & Ruldeviyani, Y. (2024). Evaluation of Indonesia’s police public service platforms through sentiment and thematic analysis. IAES International Journal of Artificial Intelligence (IJ-AI), 13(2), 1596. https://doi.org/10.11591/ijai.v13.i2.pp1596-1607

Rahman, R. & Arsyad, M. (2024). Pengembangan sistem operasi debian 12 dengan kemampuan pembelajaran interaksi pengguna untuk peningkatan user experience. Jurnal Teknologi Dan Manajemen Industri Terapan, 3(3), 348-356. https://doi.org/10.55826/jtmit.v3i3.467

Tao, Y., Hu, H., Xue, J., Zhang, Z., & Xu, F. (2024). Evaluation of ergonomic risks for construction workers based on multicriteria decision framework with the integration of spherical fuzzy set and alternative queuing method. Sustainability, 16(10), 3950. https://doi.org/10.3390/su16103950

Wibowo, R., Soeleman, M., & Affandy, A. (2023). Hybrid Top-K feature selection to improve high-dimensional data classification using naïve bayes algorithm. Scientific Journal of Informatics, 10(2), 113-120. https://doi.org/10.15294/sji.v10i2.42818

Zalukhu, H., Prastiyanto, K., subarkah, A., Ramadhan, I., & Ramadhan, N. (2023). Penggunaan machine learning dalam startup dengan pemanfaatan Smart PLS. Jurnal Mentari Manajemen Pendidikan dan Teknologi Informasi, 2(2), 111-122. https://doi.org/10.33050/mentari.v2i2.424




DOI: https://doi.org/10.33373/profis.v13i1.7741

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

E-ISSN 2598-9987

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


PROFISIENSI: Jurnal Program Studi Teknik Industri

Building A, 1st Floor, Faculty of Engineering, University of Riau Kepulauan

Jl. Pahlawan No.99, Batu Aji, Batam, Kepulauan Riau

Email: Profisiensi@journal.unrika.ac.id

 

Web Analytics Made Easy - Statcounter