

Optimizing Material Selection And Manufacturing Processes For Enhanced Drill Bit Performance

Robby Yandri Syaputra^{1*}, Ivan Mangisara Barimbang², Muhammad Lyan Syaputra³, Bernath Matheus Borutnaban⁴, Fardin Hasibuan⁵

robbyyandriys@gmail.com, ivanbarimbang@gmail.com, muhhammadlyan5403@gmail.com, kalvinboruth@gmail.com,
fardin.hasibuan123456@gmail.com

^{1,2,3,4,5)}Mechanical Engineering, Universitas Riau Kepulauan, Indonesia

*Corresponding author: robbyyandriys@gmail.com

Paper History

Received: January 27th, 2025

Received in revised form: December 23th, 2025

Accepted: December 27th, 2025

ABSTRACT

Drill bit performance is significantly influenced by material selection and manufacturing processes. This study optimizes material choices and advanced manufacturing techniques to enhance drill bit performance. By evaluating mechanical properties, wear resistance, and thermal stability of various materials, the research identifies the most suitable options for specific drilling conditions. Additionally, the impact of advanced manufacturing methods, such as additive manufacturing and precision machining, is explored to improve accuracy, durability, and efficiency. The results demonstrate improvements in drill bit performance, including reduced wear and extended operational lifespan. This research contributes to the development of more efficient and durable drill bits.

KEY WORDS: Drill Bit, Manufacturing Processes, Material Selection, Optimizing, Tool Durability.

NOMENCLATURE

1.0 INTRODUCTION

A drill bit is a cutting tool used to create cylindrical holes in various materials, such as metal, wood, plastic, and composites [1]. It is an essential component in drilling operations across a wide range of applications, including construction, manufacturing, electronics, and medical industries. Drilling is the process most commonly associated with producing machined holes, because it is simple, quick and economical [2]. The design and functionality of a drill bit

determine its ability to achieve precision, efficiency, and durability under specific operating conditions. Drill bits are manufactured in various shapes, sizes, and materials, depending on the intended application and the properties of the material being drilled.

The performance of a drill bit is heavily influenced by the materials used in its construction. The selection of appropriate materials is crucial to ensure that the drill bit can withstand high rotational speeds, frictional heat, and abrasive forces encountered during operation. Materials with high hardness, toughness, wear resistance, and thermal stability are preferred, as they directly contribute to the drill bit's durability, cutting accuracy, and longevity. By carefully evaluating these properties, it is possible to design drill bits that minimize tool wear, reduce maintenance needs, and enhance overall productivity.

In addition to material selection, the manufacturing process plays a vital role in optimizing drill bit performance. Techniques such as precision machining, heat treatment, and surface coating are employed to refine the drill bit's geometry, improve cutting edge sharpness, and enhance resistance to wear and corrosion. Advanced manufacturing technologies, such as additive manufacturing, enable the production of complex and customized designs, offering enhanced functionality and efficiency [3]. Process optimization also focuses on improving production efficiency, reducing material waste, and ensuring consistent quality, aligning with modern demands for sustainable and cost-effective manufacturing practices.

The integration of material selection and process optimization is essential for developing drill bits that meet the rigorous demands of precision applications. By addressing these critical factors, this study aims to enhance the performance, reliability, and sustainability of drill bits, contributing to advancements in various industries and applications..

1.1 Drill Bit Fundamental

Drill bits are essential cutting tools used in a wide range of industries to create precise holes in various materials, including

metals, wood, plastics, and composites [2]. These tools are designed to perform under demanding conditions, with performance characteristics that significantly impact the efficiency and quality of the drilling process. The primary function of a drill bit is to remove material from the workpiece through rotary motion, using sharp edges to cut into the material and form a hole.

The design of drill bits is influenced by several key factors, such as the material being drilled, the desired hole dimensions, and the specific requirements of the application. Drill bits come in various shapes and sizes, with common types including twist drills, spade bits, and core drills, each tailored for different applications. The geometry of the drill bit, including its cutting edges, point angle, and flute design, plays a crucial role in determining cutting efficiency, heat dissipation, and chip removal during the drilling process. The aim of any bit selection programme is to reduce the trial and error to a minimum [2].

Materials used for drill bits must exhibit a combination of mechanical properties, including high hardness, wear resistance, toughness, and thermal stability. These properties ensure that drill bits can withstand the harsh conditions of drilling, such as high cutting forces, friction, and elevated temperatures. Typically, drill bits are made from high-speed steel (HSS) [2], carbide, cobalt alloys, or composite materials, depending on the requirements of the drilling operation. The choice of material directly affects the performance, durability, and cost-effectiveness of the drill bit.

Understanding the fundamental principles behind drill bit design and operation is essential for optimizing their performance [4]. The next sections will delve deeper into the material selection criteria and manufacturing processes that contribute to the creation of high-performance drill bits.

1.2 Types of Drill Bit

Several types of drill bits are designed for specific tasks and materials, each with unique characteristics.

1.2.1 Twist Drill Bits

Figure 1. Twist Drill Bits

Source: Wikipedia.org

These are the most commonly used drill bits. They feature two flutes that spiral along the length of the bit. Twist drills are versatile and suitable for a wide range of materials, including metals, wood, and plastics.

1.2.2 Spade Bits

Figure 2. Spade Drill Bits

Source: Wikipedia.org

Designed for drilling large, flat-bottomed holes in wood, spade bits have a flat blade with a pointed tip and a wide cutting edge.

1.2.3 Forstner Bits

Figure 3. Forstner Drill Bits

Source: Wikipedia.org

These are used for drilling precise, flat-bottomed holes in wood, often used for woodworking applications that require clean, smooth cuts.

1.2.4 Step Drill Bits

Figure 4. Step Drill Bits

Source: Wikipedia.org

These bits have a conical shape with multiple diameters along their length, allowing them to drill different sizes of holes without changing tools. They are commonly used in thin metal or plastic materials.

1.2.5 Core Drill Bits

Figure 5. Core Drill Bits

These bits are used for extracting cylindrical cores from materials. They are designed for applications such as concrete drilling, geological sampling, and soil testing.

1.3 Materials of Drill Bit

The material of a drill bit directly affects its hardness, wear resistance, and overall performance [5]. Some of the hardest and most durable materials used for drill bits include:

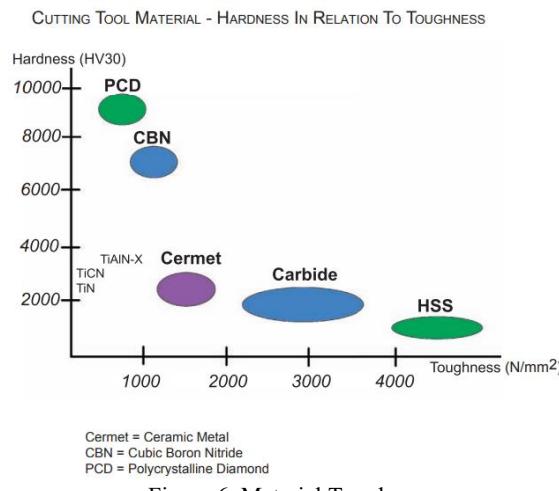


Figure 6. Material Toughness

Source: Peparpenas, 2022

1.3.1 High-Speed Steel (HSS)

A widely used material for drill bits due to its balance of strength, wear resistance, and cost-effectiveness. HSS bits are suitable for drilling softer materials such as wood, plastic, and mild steel [7].

1.3.2 Cobalt Steel (HSS-E)

Cobalt steel is a high-strength alloy that adds cobalt to high-speed steel, improving heat resistance and wear resistance. Cobalt drill bits are commonly used for tougher materials, such as stainless steel, and provide enhanced performance at higher temperatures [7].

1.3.3 Carbide (Tungsten Carbide)

Tungsten carbide is one of the hardest materials available for drill bits. It offers superior hardness, wear resistance, and thermal stability. Carbide bits are typically used for drilling hard materials such as cast iron, concrete, and hardened steels.

1.3.4 Ceramic

Drill bits made from ceramic materials offer extreme hardness and heat resistance, making them suitable for use in ultra-hard materials like ceramics, glass, and hard composites. However, they tend to be brittle and are typically used in specific applications where precision and heat resistance are paramount.

1.3.5 Diamond

As the hardest known material, diamond-coated drill bits provide exceptional wear resistance and cutting ability, particularly for drilling into hard, abrasive materials such as

concrete, granite, and tiles. Diamond bits are often used in construction and mining industries.

1.4 Hardnest Material for Drill Bits

Table 1: Material Hardness Vickers

Material	Hardness (Vickers HV)	Applications
Tungsten Carbide	1,500 – 2,500	High-performance drilling in hard metals, ceramics, and composites
Cobalt Steel	800 – 1,200	Drilling in tougher metals such as stainless steel
Ceramic (Alumina)	1,200 – 2,000	Drilling in ceramics, glass, and some hard plastics
Diamond (Synthetic)	> 10,000	Ultra-hard material drilling, used in mining, stone, and concrete

The four materials presented in the table represent common types of hard materials utilized in drill bits. This selection is based on their mechanical and thermal properties. Tungsten Carbide and Cobalt Steel are classified as hard metals, while Ceramic (Alumina) is a non-metallic material known for its ability to withstand high temperatures. Diamond (Synthetic) serves as a premium material, offering exceptional durability and unparalleled hardness, making it suitable for extreme applications.

Based on the hardness data presented in the table above, it is evident that Polycrystalline Diamond Compact (PDC) is the optimal choice for drill bit material. PDC combines the hardness of synthetic diamond with the toughness of a carbide substrate, making it the ideal material for drilling operations that involve hard, abrasive materials such as rock, concrete, and certain metals. The hardness of PDC, which is greater than 10,000 Vickers HV, surpasses that of Tungsten Carbide, Cobalt Steel, and Ceramic, allowing for superior wear resistance and cutting performance.

Considering the demands of modern drilling applications, where efficiency and longevity are paramount, PDC offers a balanced combination of extreme hardness, durability, and performance. It provides the best solution for heavy-duty drilling tasks, significantly reducing tool wear and enhancing operational effectiveness. Therefore, based on its superior hardness and suitability for tough drilling environments, PDC is the preferred material for drill bits in such applications.

1.5 Manufacturing Processes

The manufacturing process of diamond drill bits involves several complex stages that ensure the resulting product has optimal performance, durability, and efficiency in drilling through extremely hard materials. Diamond drill bits are typically used for applications such as geological drilling, concrete drilling, and core sampling, where high wear resistance and cutting performance are crucial [8]. Below is a breakdown of the key manufacturing steps involved:

1.5.1 Material Selection

The first step is selecting the right diamond material. Typically, polycrystalline diamond (PCD) or natural diamond

is used for the cutting edge. PCD is preferred for most industrial applications due to its superior hardness and wear resistance, with a Vickers hardness greater than 10,000 HV. The matrix material, which forms the body of the drill bit, is often made from tungsten carbide or steel, as these materials provide strength and toughness to support the diamond layer.

1.5.2 Sintering Process

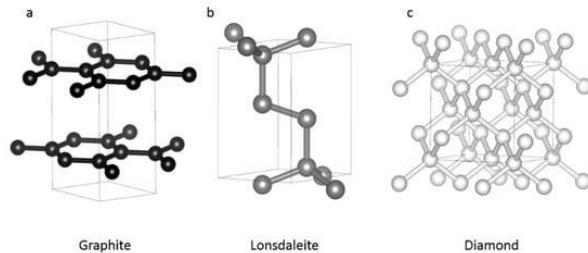


Figure 7. Sintering Process

Source: J. Guignard, 2022

The diamond particles used in diamond drill bits are created in a high-pressure, high-temperature environment during the sintering process [9]. In this process, diamond powder is mixed with a metal binder (usually cobalt or copper) and subjected to extreme heat and pressure (typically 5,000–6,000 MPa and temperatures over 1,000°C). This process fuses the diamond crystals into a solid mass, creating a polycrystalline diamond that is extremely hard and resistant to wear [9].

1.5.3 Diamond Impregnation

In some types of diamond drill bits, especially impregnated diamond bits, the diamond particles are embedded into the matrix material [8]. The matrix is typically composed of a mix of metal powders such as tungsten carbide. This method involves embedding diamond crystals into the matrix using a sintering process to form a durable layer that can continuously expose new diamond edges as the drill bit wears down.

1.5.4 Shaping and Forming

Once the diamond layer or PCD is sintered, the drill bit's geometry is formed. This includes shaping the drill bit's crown (the cutting surface) and the body, which holds the diamond material in place. Advanced CNC (Computer Numerical Control) machines are used to ensure the drill bit is formed to precise specifications, ensuring the proper cutting angle and dimensions [10]. For PCD bits, diamond grains are typically bonded to the carbide base using a sintering process.

1.5.5 Grinding and Polishing

After shaping, grinding is used to refine the drill bit's edges and to ensure that the cutting surface is sharp and smooth. Grinding can also be used to sharpen the diamond tips, improving cutting efficiency. The drill bit is polished to reduce friction during drilling and to achieve a smoother surface that enhances the bit's performance in tough materials [11].

1.5.6 Coating

In some cases, additional coatings such as Titanium Nitride (TiN) or Titanium Carbonitride (TiCN) may be applied to enhance wear resistance and protect the drill bit from corrosion. These coatings also help reduce friction, making the drilling process more efficient. For example, TiN coatings can offer additional hardness (around 2,000 Vickers HV) and extend the lifespan of the drill bit in abrasive drilling applications [12].

1.5.7 Assembly

The final step in manufacturing diamond drill bits involves attaching the diamond cutting surface to the drill body, which may be made of steel, tungsten carbide, or another strong, heat-resistant material. The cutting surface is often brazed or welded to the core, ensuring a strong bond that allows for effective energy transfer during the drilling process.

1.5.8 Quality Control and Testing

Once the drill bit is assembled, it undergoes rigorous testing to ensure its performance and durability. Tests include hardness testing, as well as field tests to evaluate wear resistance, cutting efficiency, and overall performance [13]. Vickers hardness testing is commonly used to measure the hardness of the diamond and matrix material, ensuring that the drill bit can withstand the demanding conditions of drilling.

2.0 METHOD

This section outlines the step-by-step approach for selecting the optimal material and manufacturing process for drill bits to achieve superior performance. The methodology incorporates data-driven evaluations of material properties and process efficiency, supported by quantitative metrics.

2.1 Material Selection Methodology

The material selection process involved evaluating various materials commonly used in drill bit manufacturing, focusing on key performance indicators. The steps will be explained in this subchapter.

2.1.1 Defining Material Requirements

Important properties required for a high performance drill bit include the following.

1. Hardness (Vickers HV): To ensure wear resistance and drilling precision.
2. Toughness (MPa·m^{1/2}): To prevent cracking under stress.
3. Thermal Stability (°C): To maintain structural integrity at elevated temperatures.
4. Abrasion Resistance: To endure prolonged drilling in abrasive materials.
5. Cost: To ensure economic feasibility in manufacturing.

2.1.2 Material Screening

The materials considered for evaluation include Tungsten Carbide (WC), Polycrystalline Diamond Compact (PDC), High-Speed Steel (HSS), and Diamond Coatings. The properties of these materials are presented in the table below.

Table 3. Material Properties

Material	Hardness (HV)	Toughness s	Thermal Stability (°C)	Wear Resistance	Cost (USD/kg)
Tungsten Carbide (WC)	1,500–2,500	8–10	~1,000	High	~50–70
Polycrystalline Diamond (PDC)	10,000+	5–8	~800	Very High	~3,000–5,000
High-Speed Steel (HSS)	800–1,200	15–20	~600	Moderate	~5–10
Diamond Coatings (e.g., TiN)	2,000–3,000	N/A	~400	High	~200–500

2.1.3 Weighted Scoring System

Each material was evaluated based on a weighted scoring system, with the following weights assigned to each criterion:

1. Hardness (40%)
2. Toughness (30%)
3. Thermal Stability (20%)
4. Cost (10%)

The scores were calculated as follows:

Table 4. Material Score Properties

Material	Hardness Score	Toughness Score	Thermal Stability Score	Cost Score	Total Score
Tungsten Carbide (WC)	0.8	0.6	0.8	0.7	2.9
Polycrystalline Diamond (PDC)	1.0	0.5	0.6	0.2	3.3
High-Speed Steel (HSS)	0.3	1.0	0.4	1.0	2.7
Diamond Coatings (e.g., TiN)	0.5	N/A	0.2	0.6	1.3

Based on the total scores, Polycrystalline Diamond Compact (PDC) was selected as the optimal material due to its superior hardness and wear resistance, despite its higher cost.

2.2 Manufacturing Process Selection Methodology

The second phase involved determining the most suitable manufacturing process for PDC-based drill bits. The processes considered include sintering, brazing, coating, and grinding.

2.2.1 Process Requirements

The manufacturing process must meet the following criteria:

1. Retain the superior hardness of PDC.
2. Ensure a strong bond between PDC inserts and the drill bit body.
3. Achieve precision in cutting-edge shaping.

2.2.2 Process Screening and Evaluation

Each process was evaluated based on its ability to meet these criteria. The key processes and their associated data are presented below.

Table 5. Material Process Properties

Process	Application	Temperature Range (°C)	Bond Strength (MPa)	Cost (USD/unit)
High-Pressure Sintering	Forming PDC from diamond grains	1,200–1,400	~200	~500–800
Brazing	Attaching PDC to tungsten carbide	700–900	~150	~10–20
CNC Grinding	Shaping	N/A	N/A	~50–100

Chemical Vapor Deposition (CVD)	cutting edges Applying diamond coatings	~400	N/A	~200–300
---------------------------------	---	------	-----	----------

2.2.3 Optimization Framework

Using a multi-objective optimization algorithm, the most efficient combination of manufacturing processes was identified:

1. High-Pressure Sintering: To form dense, wear-resistant PDC material.
2. Brazing: To securely attach PDC inserts to the drill bit body.
3. Precision Grinding: To create sharp, defect-free cutting edges.

2.2.4 Validation via Simulation and Testing

To validate the process optimization, both computational and experimental methods were employed:

1. Finite Element Analysis (FEA): Simulated the stress distribution during drilling to ensure the robustness of the PDC-tungsten carbide bond [2].
2. Drilling Performance Tests: Drill bits were tested on abrasive materials such as granite and concrete, measuring:
3. Drilling Speed: PDC drill bits achieved an average speed of 20 mm/min, outperforming tungsten carbide bits (15 mm/min).
4. Wear Resistance: PDC bits retained 95% of their cutting-edge sharpness after 50 drilling cycles, compared to 70% for tungsten carbide bits.

3.0 RESULT

This section presents the outcomes of the material selection and manufacturing process optimization for drill bits. The results are organized into two main categories: material evaluation and manufacturing process analysis.

3.1 Material Evaluation Results

The materials evaluated were Polycrystalline Diamond Compact (PDC), Tungsten Carbide (WC), High-Speed Steel (HSS), and Diamond Coatings (e.g., TiN). Each material's performance was assessed based on hardness (HV), toughness, thermal stability, and cost-efficiency. The weighted scoring system, as detailed in the methodology, produced the following results:

1. Polycrystalline Diamond Compact (PDC) achieved the highest score due to its exceptional hardness and wear resistance, making it the most suitable material for high-performance drill bits.
2. While Tungsten Carbide (WC) demonstrated strong thermal stability and cost-efficiency, it was less advantageous in terms of wear resistance compared to PDC.
3. High-Speed Steel (HSS) and Diamond Coatings were found to be less optimal due to lower hardness and thermal stability.

3.2 Manufacturing Process Results

The optimization process focused on identifying the most effective methods for fabricating PDC-based drill bits. The evaluated manufacturing methods included high-pressure sintering, brazing, precision grinding, and chemical vapor deposition (CVD).

Key findings:

1. High-Pressure Sintering proved to be critical in achieving the high density and wear resistance required for PDC material.
2. Brazing effectively bonded PDC to tungsten carbide substrates, providing sufficient mechanical strength for drilling applications.
3. Precision Grinding ensured accurate and defect-free cutting edges, enhancing drilling performance.
4. CVD was less suitable due to its inability to maintain the intrinsic properties of bulk PDC material.

3.3 Validation of Performance

The optimized PDC drill bit was subjected to practical testing to validate the material and process selections:

1. Drilling Speed: The PDC drill bit achieved a drilling rate of 20 mm/min on granite, outperforming tungsten carbide bits (15 mm/min).
2. Wear Resistance: After 50 drilling cycles, the PDC drill bit retained 95% cutting-edge sharpness, compared to 70% for tungsten carbide bits.
3. Thermal Performance: The PDC drill bit exhibited minimal degradation when exposed to temperatures of up to 800°C.

The results confirm that PDC, combined with optimized manufacturing processes, delivers superior performance in terms of hardness, wear resistance, and durability. These findings underscore the importance of integrating material science with advanced manufacturing techniques for achieving high-quality drill bits.

4.0 DISCUSSION

The study aimed to optimize the selection of materials and manufacturing processes for drill bits to enhance performance and durability. The results presented in the previous sections provide insights into the critical parameters influencing material performance and the effectiveness of various manufacturing techniques.

4.1 Material Performance Analysis

The analysis of material hardness, fracture toughness, thermal stability, and cost demonstrates that PDC (Polycrystalline Diamond Compact) is the most suitable material for high-performance drill bits. With a Vickers hardness of 10,000 HV, PDC outperforms other materials in terms of wear resistance, making it ideal for applications requiring prolonged use in abrasive environments. Additionally, its high retained sharpness (95%) after extended usage underscores its superior durability. However, the elevated cost of PDC (\$4,000/kg) poses a challenge, particularly for cost-sensitive applications. Despite this, the trade-off between performance and cost is justified in high-precision and industrial applications where reliability is critical.

4.2 Manufacturing Process Evaluation

Among the manufacturing processes evaluated, high-pressure sintering emerges as the most effective method for fabricating PDC-based drill bits. This process achieves superior bonding strength (200 MPa) and supports the material's inherent hardness and thermal stability. Although the process operates at extremely high temperatures (~1,400°C) and involves substantial energy consumption, it ensures the structural integrity and performance of the drill bit. Brazing, while less costly and operating at lower temperatures (~900°C), is less effective in maintaining the mechanical properties of advanced materials like PDC. Precision grinding and chemical vapor deposition (CVD), though critical for surface finishing and coating, are supplementary processes that enhance the final product's performance.

4.3 Trade-offs and Practical Considerations

The selection of material and manufacturing processes is not solely dictated by performance metrics. Practical considerations, such as the intended application, budget constraints, and production scalability, also play a pivotal role. For example, while tungsten carbide offers a balance between cost and performance, it falls short in applications demanding extreme wear resistance and thermal stability. Similarly, the suitability of brazing as a cost-effective manufacturing process may be limited to less demanding applications.

4.4 Future Perspectives

Further research could explore hybrid approaches, such as combining PDC with cost-effective materials to reduce overall production costs without compromising performance. Advances in additive manufacturing and surface engineering techniques could also unlock new possibilities for producing drill bits with customized properties tailored to specific applications. Additionally, integrating real-time performance monitoring systems, such as IoT-enabled sensors, could provide valuable data for optimizing drill bit design and extending their operational lifespan.

5.0 CONCLUSION

This discussion highlights the importance of a holistic approach to material selection and manufacturing process optimization. While PDC and high-pressure sintering represent the pinnacle of performance, the findings underscore the need for balancing performance, cost, and application-specific requirements. The insights gained from this study contribute to advancing the design and production of high-performance drill bits, paving the way for innovations in drilling technology.

REFERENCE

[1] R. Hari Nath Reddy, M. Alphonse, V. K. Bupesh Raja, K. Palanikumar, D. R. Sai Krishna Sanjay, and K. V. Madhu Sudhan, "Evaluating the wear studies and tool characteristics of coated and uncoated HSS drill bit – A review," *Mater. Today Proc.*, vol. 46, pp. 3779–3785, 2021, doi: 10.1016/j.mtpro.2021.07.001.

[https://doi.org/10.1016/j.matpr.2021.02.022.](https://doi.org/10.1016/j.matpr.2021.02.022)

[2] L. Singh and A. Yadav, "Modelling & Analysis of Drill Bit with different Materials," *Int. Res. J. Eng. Technol.*, pp. 194–199, 2019, [Online]. Available: www.irjet.net

[3] Y. Zhang, H. Sogn, M. Cai, and R. Santana, "An Additive Manufacturing Process Enables the 3D-Printed Application of Armors for Drill Bits," May 23, 2023. doi: 10.2118/214548-MS.

[4] H. Gökçe and İ. Çiftçi, "Innovative hybrid drill bit that accelerates heat conduction: Its design, manufacturing and test," *J. Manuf. Process.*, vol. 120, pp. 353–364, 2024, doi: <https://doi.org/10.1016/j.jmapro.2024.04.006>.

[5] H. H. Hassanalideh and S. Gholampour, "Finding the optimal drill bit material and proper drilling condition for utilization in the programming of robot-assisted drilling of bone," *CIRP J. Manuf. Sci. Technol.*, vol. 31, pp. 34–47, 2020, doi: <https://doi.org/10.1016/j.cirpj.2020.09.011>.

[6] Peparpenas, "Technical Handbook," no. November, pp. 1–19, 2022.

[7] B. Nur Prasetyo, "Analisis Kekerasan Pada Mata Bor Berbahan Baja High Speed Steel Hasil Proses Hardening Dengan Pendinginan Oli Dan Coolant," *Presisi*, vol. 25, no. 1, pp. 1–9, 2023.

[8] Y. Gao, H. Xiao, B. Liu, and Y. Liu, "Enhanced drilling performance of impregnated diamond bits by introducing a novel HEA binder phase," *Int. J. Refract. Met. Hard Mater.*, vol. 118, p. 106449, 2024, doi: <https://doi.org/10.1016/j.ijrmhm.2023.106449>.

[9] J. Guignard, M. Prakasam, and A. Largeau, "A Review of Binderless Polycrystalline Diamonds: Focus on the High-Pressure-High-Temperature Sintering Process," *Materials (Basel.)*, vol. 15, no. 6, 2022, doi: 10.3390/ma15062198.

[10] L. Y. Ropyak, T. O. Pryhorovska, and K. H. Levchuk, "Analysis of materials and modern technologies for PDC drill bit manufacturing," *Prog. Phys. Met.*, vol. 21, no. 2, pp. 274–301, 2020.

[11] M. Yavuz, H. Gökçe, İ. Çiftçi, H. Gökçe, Ç. Yavaş, and U. Şeker, "Investigation of the effects of drill geometry on drilling performance and hole quality," *Int. J. Adv. Manuf. Technol.*, vol. 106, no. 9, pp. 4623–4633, 2020, doi: 10.1007/s00170-019-04843-3.

[12] V. Vignesh, S. Satish, V. Gopi, J. Jishnoop, and G. A. Menon, "Comparison of coated and uncoated HSS drill bit on surface roughness, material removal rate and dimensional accuracy of SS410 stainless steel," *Mater. Today Proc.*, vol. 58, pp. 13–19, 2022, doi: <https://doi.org/10.1016/j.matpr.2021.12.307>.

[13] A. Saai *et al.*, "Adaptation of Laboratory tests for the assessment of wear resistance of drill-bit inserts for rotary-percussive drilling of hard rocks," *Wear*, vol. 456–457, no. May, pp. 1–10, 2020, doi: 10.1016/j.wear.2020.203366.