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ABSTRACT 

 
This paper presents an experimental analysis of resonance 

behavior in a mechanical vibrating beam. A cantilever beam 

made of aluminum was subjected to forced vibrations using a 

shaker, and the frequency response was measured with an 

accelerometer. Resonance frequencies for the first three modes 

were determined and compared with theoretical predictions 

based on Euler-Bernoulli beam theory. The experimental results 
showed excellent agreement with theoretical values, with errors 

less than 1%, validating the approach. This study underscores 

the importance of understanding resonance in mechanical 

structures to prevent failures due to excessive vibrations. 
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NOMENCLATURE 

E Young’s modulus 

I Moment of inertia 

L Length of the beam 

b Width of the beam 
ℎ Thickness of the beam 

ρ Density 

μ Mass per unit length 

fn Natural frequency 

βn Eigenvalue for the 𝑛-th mode 

σn Mode shape constant 

δ Logarithmic decrement 

ζ Damping ratio 

 

 

1.0 INTRODUCTION 

 

Resonance is a fundamental phenomenon in mechanical systems 

where a structure oscillates with maximum amplitude at specific 

frequencies, known as natural or resonance frequencies. 
Resonance has historically been the cause of significant 

structural failures, as the disastrous Tacoma Narrows Bridge 

collapse in 1940, when wind-induced vibrations coincided with 

the bridge's inherent frequency to produce destructive 
oscillations [1]. 

This study experimentally investigates resonance in a 

cantilever beam, a simple yet versatile structural element widely 

used in engineering, from aerospace components like wing 
structures to MEMS sensors [2]. Fixed at one end and free at the 

other, cantilever beams are ideal for studying vibrational 

dynamics due to their clear natural frequencies and mode shapes. 
Resonance depends on material properties (e.g., Young's 

modulus, density), geometry (e.g., length, width, thickness), and 

boundary conditions (e.g., clamping rigidity), necessitating 

experimental validation of theoretical models [3]. 
 The primary objectives of this study are threefold: 

1. To experimentally determine the natural frequencies 

of a cantilever beam.  

2. To compare experimental results with theoretical 
predictions using Euler-Bernoulli beam theory.  

3. To visualize the mode shapes associated with each 

natural frequency.  

By achieving these objectives, the study aims to validate 
theoretical models, enhance understanding of resonance 

phenomena, and provide practical insights for engineers 

designing systems susceptible to vibrational effects. The 

experimental approach involves exciting an aluminum cantilever 
beam with a shaker and measuring its response using 

accelerometers, a method chosen for its precision and ability to 

capture dynamic behavior across a range of frequencies [4]. The 

findings are expected to contribute to the broader field of 
vibration analysis, supporting the development of robust design 

strategies to mitigate resonance-induced failures. 

 

1.1 Background 

Resonance is a critical phenomenon in mechanical engineering, 
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characterized by a system's tendency to oscillate with 
significantly increased amplitude when subjected to an external 

force at a frequency matching its natural frequency. This 

behavior is particularly pronounced in structures like beams, 

where resonance can lead to large deflections, potentially 
causing material fatigue, structural damage, or catastrophic 

failure [1]. A well-known example is the collapse of the Tacoma 

Narrows Bridge in 1940, where wind-induced vibrations at the 

bridge’s natural frequency led to its destruction, highlighting the 
real-world consequences of resonance [1]. Cantilever beams, 

fixed at one end and free at the other, are especially susceptible 

to resonance due to their boundary conditions, which allow for 

distinct vibrational modes. These beams are widely used in 
engineering applications, including as structural components in 

bridges, aircraft wings, and buildings, as well as in 

microelectromechanical systems (MEMS) for sensors and 

actuators [2]. 
The study of resonance in cantilever beams is essential 

because their vibrational characteristics depend on multiple 

factors, including material properties (e.g., Young’s modulus 

and density), geometric parameters (e.g., length, cross-sectional 
area, and moment of inertia), and boundary conditions (e.g., the 

rigidity of the clamped end) [3]. Experimental investigations are 

vital for validating theoretical models, as real-world conditions 

such as imperfect clamping, material inhomogeneities, or 
environmental damping (e.g., air resistance) can introduce 

discrepancies [2]. Prior studies, such as those by Crespo da Silva 

(2016), have demonstrated that cantilever beams exhibit 

complex resonance behavior, including nonlinear effects at 
higher amplitudes, which can complicate predictions [2]. 

Understanding these dynamics is crucial for designing systems 

that avoid operating near resonance frequencies to prevent 

excessive vibrations. This study builds on such work by 
conducting controlled experiments to measure resonance 

frequencies and mode shapes, providing practical data for 

engineering applications and educational purposes [4]. 

 
1.2 Theoretical Framework 

The vibrational behavior of a cantilever beam is mathematically 

described by the Euler-Bernoulli beam theory, which provides a 

robust framework for predicting natural frequencies and mode 
shapes. This theory assumes that the beam is slender, undergoes 

small deflections, and is subject to linear elastic behavior, 

making it suitable for the aluminum beam used in this study [3]. 

The natural frequency vibrational mode of a cantilever beam is 
given by the equation: 

 
     

            (1) 
 

 

The eigenvalues for the first three modes are approximately 

β1 = 1.875, β2 = 4.694, β3 = 7.855, which dictate the spatial 

distribution of vibrational modes [3]. These modes correspond 

to distinct patterns of deformation, known as mode shapes, 

where the first mode has no nodes (points of zero displacement), 
the second has one, and the third has two, and so on [2]. 

The Euler-Bernoulli model assumes negligible shear 

deformation and rotary inertia, which is reasonable for slender 

beams like the one used here (length-to-thickness ratio 
L/ℎ≈166.67) [3]. However, practical deviations, such as damping 

effects or nonlinear behavior at high amplitudes, may affect 
experimental results [2]. This study uses Equation (1) to compute 

theoretical natural frequencies for an aluminum cantilever beam 

with specific dimensions and material properties, providing a 

baseline for comparison with experimental measurements. The 
theoretical framework is complemented by experimental 

validation to account for real-world factors, ensuring the 

accuracy of resonance predictions for engineering applications 

[4]. 
 

 

2.0 METHODOLOGY 
 

This study is Designed to systematically investigate the 

resonance behavior of a cantilever beam through experimental 

analysis, ensuring accurate measurement of natural frequencies 
and mode shapes. The approach combines controlled vibration 

excitation, precise data collection, and rigorous analysis to 

validate theoretical predictions based on Euler-Bernoulli beam 

theory [1]. The experimental setup, procedures, and data analysis 
techniques are carefully structured to minimize errors and 

capture the dynamic response of the beam across a relevant 

frequency range. This section provides a comprehensive 

overview of the methods employed, detailing the equipment, 
experimental conditions, and analytical processes used to 

achieve the study’s objectives. 

The methodology is divided into three key components: the 

experimental setup, which describes the physical configuration 
and instrumentation; the procedure, which outlines the steps 

taken to excite and measure the beam’s response; and the data 

analysis, which explains how the collected data were processed 

to extract resonance frequencies and mode shapes. 

By employing standard laboratory equipment, such as a 

shaker and accelerometers, the experiment is designed to be 

reproducible and accessible, making it suitable for both research 

and educational purposes [2]. The use of a frequency sweep 
approach allows for a thorough exploration of the beam’s 

dynamic behavior, while advanced data acquisition systems 

ensure high-resolution measurements. The methodology also 

accounts for potential sources of error, such as environmental 
damping or clamping imperfections, to enhance the reliability of 

the results [3]. 

 

2.1 Experimental Setup 

The experimental setup was meticulously designed to facilitate 

accurate measurement of the cantilever beam’s vibrational 

response under controlled conditions. The beam, made of 

aluminum, was selected for its well-characterized material 
properties and suitability for Euler-Bernoulli beam theory 

assumptions [1]. The beam’s specifications are as follows:  

• Length: L = 0.5 m  
• Width: b = 0.02 m  

• Thickness: h = 0.003 m  

• Young’s modulus: E = 70 GPa  

• Density: ρ = 2700 kg/m3  
The beam was securely clamped at one end to a rigid 

support, constructed from steel to minimize unwanted flexibility 

or vibrational interference. The clamped boundary 
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condition was critical to emulate the theoretical fixed-end 
assumption, with torque applied to ensure uniform contact and 

prevent slippage during excitation [3]. The free end of the beam 

was left unconstrained to allow maximum deflection, enabling 

clear observation of vibrational modes.  
A mechanical shaker (model: Brüel & Kjær Type 4809) was 

attached near the clamped end to deliver sinusoidal transverse 

excitation, controlled by a signal generator to produce a range of 

frequencies. The shaker was coupled to the beam via a 
lightweight stinger to minimize mass loading effects, which 

could alter the beam’s natural frequencies [2]. An accelerometer 

(model: PCB Piezotronics 352C33, mass 0.0012 kg) was 

mounted at the free end of the beam to measure the vibrational 
response, selected for its high sensitivity and low mass to avoid 

influencing the beam’s dynamics. Additional accelerometers 

were strategically placed along the beam’s length during mode 

shape experiments to capture spatial variations in amplitude and 
phase. 

The setup was connected to a data acquisition system 

(National Instruments NI-DAQmx) interfaced with a computer 

running LabVIEW software for real-time data collection and 
analysis. The system was calibrated to ensure accurate frequency 

and amplitude measurements, with a sampling rate of 1000 Hz 

to capture high-frequency modes adequately. The experimental 

environment was controlled to minimize external disturbances, 
such as air currents or mechanical noise, and the setup was 

placed on a vibration-isolated table to enhance measurement 

precision. A schematic of the experimental configuration is 

illustrated in Figure 1, highlighting the beam, shaker, 
accelerometers, and data acquisition system. 

 

 
Figure 1: Schematic of the experimental setup for the cantilever 

beam 

 

2.2 Procedure 

The experimental procedure was developed to systematically 

excite the cantilever beam and measure its vibrational response 

across a frequency range relevant to its first three natural modes. 

The procedure involved a frequency sweep approach, where the 
shaker applied sinusoidal excitation at incrementally increasing 

frequencies, allowing the identification of resonance frequencies 

through peaks in the beam’s response [4]. The steps were as 

follows: 

1. Initial Calibration: The shaker, accelerometers, and data 
acquisition system were calibrated to ensure accurate 

force input and response measurement. The 

accelerometer’s sensitivity was verified using a 

reference signal, and the shaker’s output was checked for 
linearity across the frequency range.  

2. Frequency Sweep: The shaker’s frequency was varied 

from 1 Hz to 200 Hz in increments of 0.5 Hz, covering 

the expected natural frequencies of the first three modes 
(approximately 9.87 Hz, 61.8 Hz, and 172.9 Hz, based 

on theoretical calculations). Each frequency was held for 

5 seconds to allow the beam to reach a steady-state 

response, ensuring reliable amplitude measurements [2].  
3. Response Measurement: The acceleration at the free end 

was recorded continuously using the primary 

accelerometer. The data acquisition system sampled the 

signal at 1000 Hz, providing high temporal resolution to 
capture transient and steady-state behavior. The input 

force from the shaker was also monitored to compute the 

frequency response function (FRF).  

4. Mode Shape Visualization: To capture mode shapes, 
additional accelerometers were placed at five equally 

spaced points along the beam (at x=0.1m, 0.2m, 0.3m, 

0.4m, 0.5m) during separate tests at each identified 

resonance frequency. The relative amplitudes and phase 
differences between these points were recorded to 

construct the mode shapes.  

5. Damping Estimation: To quantify damping effects, an 

impulse test was conducted by applying a sudden force 
to the beam’s free end and recording the decaying free 

vibration response. This data was used to estimate the 

damping ratio via curve-fitting techniques [4].  

6. Data Storage and Verification: All measurements were 
stored in digital format for post-processing. The 

frequency sweep was repeated three times to ensure  

repeatability, and outliers were identified and excluded 

to enhance data reliability. 
The procedure was designed to balance precision and 

efficiency, with the frequency increment of 0.5 Hz providing 

sufficient resolution to pinpoint resonance peaks while keeping 

the experiment duration manageable. The use of multiple 
accelerometers for mode shape analysis ensured comprehensive 

spatial data, and the impulse test provided insights into damping 

characteristics, which are critical for understanding real-world 

vibrational behavior [3]. 
 

2.3 Data Analysis 

The data analysis phase was critical to extracting meaningful 

insights from the experimental measurements, focusing on 
identifying the natural frequencies, mode shapes, and damping 

characteristics of the cantilever beam. The primary objective was 

to process the raw acceleration data collected during the 
frequency sweep and impulse tests to determine the beam’s 

resonance behavior and compare it with theoretical predictions 

based on Euler-Bernoulli beam theory [1]. The analysis involved 

a combination of signal processing, mathematical modeling, and 
visualization techniques to ensure accuracy and reliability, while 

accounting for potential sources of error such as measurement 

noise or environmental influences [2]. The following steps 

outline the comprehensive data analysis
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 procedure employed in this study. 
1. Frequency Response Function (FRF) Calculation: The 

raw acceleration data from the accelerometer at the 

beam’s free end, along with the input force from the 

shaker, were used to compute the FRF, defined as the 
ratio of the output acceleration to the input force in the 

frequency domain. This was achieved using a Fast 

Fourier Transform (FFT) algorithm implemented in 

LabVIEW software, which converted time-domain 
signals into frequency-domain spectra [3]. The FRF was 

plotted as amplitude versus frequency, with resonance 

frequencies identified as the frequencies corresponding 

to prominent peaks in the FRF curve (see Figure 2). A 
frequency resolution of 0.5 Hz ensured precise 

identification of these peaks, particularly for the first 

three modes expected around 9.87 Hz, 61.8 Hz, and 

172.9 Hz based on theoretical calculations [1]. 
2. Natural Frequency Determination: The resonance 

frequencies were determined by locating the maxima in 

the FRF plot. To enhance accuracy, a peak detection 

algorithm was applied, which fitted a quadratic curve to 
the data points around each peak to pinpoint the exact 

frequency. The identified frequencies were recorded for 

the first three vibrational modes, and their values were 

compared with theoretical predictions using the Euler-
Bernoulli equation as shown in equation (1), where I = 

(b h³)/12 = (0.02 × 0.003³)/12 = 4.5 × 10⁻¹¹ m⁴, μ = ρ b 

h = 2700 × 0.02 × 0.003 = 0.162 kg/m, and βn values 
were 1.875, 4.694, and 7.855 for the first three modes 
[1]. The percentage difference between experimental 

and theoretical frequencies was calculated to assess the 

accuracy of the experimental setup. 

3. Mode Shape Construction: To visualize the mode 
shapes, acceleration data from multiple accelerometers 

placed at five equally spaced points along the beam 

(x=0.1m, 0.2m, 0.3m, 0.4m, 0.5m) were analyzed at each 

resonance frequency. The relative amplitudes and phase 
differences were extracted from the FRF data at these 

points, normalized with respect to the maximum 

amplitude at the free end. The mode shapes were plotted 

as displacement profiles along the beam’s length, 
confirming the expected patterns: the first mode with no 

nodes, the second with one node, and the third with two 

nodes [2]. These shapes were validated against 

theoretical mode shapes derived from the Euler-
Bernoulli solution, given by: 

 

     (2) 

 

where σn is a constant determined by boundary 
conditions [1]. 

4. Damping Ratio Estimation: The damping ratio was 

estimated to quantify energy dissipation in the beam, 

which affects the amplitude of resonance peaks. An 
impulse test was conducted by applying a sudden force 

to the beam’s free end and recording the decaying free 

vibration response.  
 

    (3) 
 

where δ is the logarithmic decrement, ai and ai+k are the 

amplitudes of the i-th and (i+k)-th peaks, and k is the 
number of cycles between them. The damping ratio ζ 

was then calculated as: 

 

      (4) 

 
This analysis was performed using MATLAB’s curve-

fitting tools to ensure precision [4]. The damping ratio 

provided insights into the influence of air damping and 

material properties on the beam’s response. 
5. This analysis was performed using MATLAB’s curve-

fitting tools to ensure precision [4]. The damping ratio 

provided insights into the influence of air damping and 

material properties on the beam’s response. 
6. Error Analysis and Data Validation: To ensure 

reliability, the frequency sweep was repeated three 

times, and the average resonance frequencies were 

calculated to mitigate the effects of random noise. 
Outliers were identified using a statistical threshold (data 

points deviating by more than two standard deviations 

from the mean) and excluded from the analysis. Potential 

sources of error, such as accelerometer mass loading or 
imperfect clamping, were quantified by comparing the 

experimental FRF with simulations that included these 

effects [2]. The consistency of results across trials 

confirmed the robustness of the data. 
7. Data Visualization: The processed data were visualized 

in multiple forms to facilitate interpretation. The FRF 

was plotted as shown in Figure 2, with clear labels for 

resonance peaks. Table 1 summarized the experimental 
and theoretical frequencies, including percentage 

differences. Mode shapes were depicted in Figure 3, 

showing the spatial distribution of vibrations for each 

mode. These visualizations aided in comparing 
experimental results with theoretical expectations and 

identifying any discrepancies [3]. 

The data analysis was conducted with high precision, 

leveraging computational tools to handle large datasets and 
complex calculations. By combining FFT-based signal 

processing, theoretical modeling, and statistical validation, the 

analysis ensured that the resonance frequencies and mode shapes 

were accurately characterized, providing a solid foundation for 
the results presented in Section 3.0 [4]. 

 

 

3.0 RESULT 
 

The results section presents the findings from the experimental 
analysis of the resonance behavior of a cantilever beam, focusing 

on the measured natural frequencies, mode shapes, and damping 

characteristics. The primary objective was to quantify the 

beam’s vibrational response under controlled excitation and 
compare these measurements with theoretical predictions 

derived from Euler-Bernoulli beam theory [1]. The
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experiments yielded high-quality data, enabling precise 
identification of resonance frequencies and detailed 

visualization of mode shapes, which are critical for validating 

the theoretical model and understanding the beam’s dynamic 

behavior [2]. This section provides a comprehensive overview 
of the results, including quantitative data, graphical 

representations, and comparisons with theoretical expectations, 

while addressing the implications of the findings for engineering 

applications. 
The experimental setup involved exciting an aluminum 

cantilever beam with a shaker across a frequency range of 1 Hz 

to 200 Hz, with acceleration responses recorded using 

accelerometers. The frequency response function (FRF) was 
computed to identify resonance frequencies, which appeared as 

distinct peaks in the amplitude-frequency plot. The FRF, shown 

in Figure 2, revealed clear resonance peaks at 9.8 Hz, 61.5 Hz, 

and 172.3 Hz, corresponding to the first three vibrational modes 
of the beam.  

 

 
Figure 2: Frequency Response Function of the cantilever beam, 

showing peaks at 9.8 Hz, 61.5 Hz, and 172.3 Hz. 
 

These frequencies were compared with theoretical values 

calculated using the Euler-Bernoulli equation as shown in 

equation (1), where E = 70 GPa, I = (b h³)/12 = (0.02 × 0.003³)/12 
= 4.5 × 10⁻¹¹ m⁴, μ = ρ b h = 2700 × 0.02 × 0.003 = 0.162 kg/m, 

L = 0.5 m, and βn values of 1.875, 4.694, and 7.855 for the first 

three modes [1]. The theoretical frequencies were calculated as 

9.87 Hz, 61.8 Hz, and 172.9 Hz, respectively, showing close 
agreement with the experimental results. 

Table 1 summarizes the comparison between experimental 

and theoretical natural frequencies, including the percentage 

difference for each mode: 
 

Table 1: Compares Experimental and Theoretical Natural 

Frequencies 

Mode 

 

Experimental 

Frequency 
(Hz) 

 

Theoretical 

Frequency (Hz) 

 

 

% Difference 
 

   

1 9.8 9.87 0.71 

2 61.5 61.8 0.49 

3 172.3 172.9 0.35 

 

The small percentage differences (all less than 1%) indicate 

a high degree of accuracy in the experimental setup and validate 
the applicability of the Euler-Bernoulli model for this beam [1]. 

The slight deviations can be attributed to factors such as 

imperfect clamping, which may introduce additional flexibility, 

or minor air damping effects, which were not accounted for in 
the theoretical model [2]. To ensure reliability, the frequency 

sweep was conducted three times, and the reported frequencies 

represent the average values, with standard deviations of less 

than 0.1 Hz, confirming the repeatability of the measurements. 
The FRF plot, depicted in Figure 2, provides a visual 

representation of the beam’s dynamic response. The sharp peaks 

at 9.8 Hz, 61.5 Hz, and 172.3 Hz correspond to the resonance 

frequencies, with the amplitude at each peak indicating the 
intensity of the vibrational response. The first mode exhibited 

the highest amplitude due to its lower stiffness, while higher 

modes showed progressively lower amplitudes, consistent with 

theoretical expectations [3]. The FRF also revealed minor 
secondary peaks at non-resonant frequencies, likely due to noise 

or slight nonlinear effects at higher amplitudes, but these were 

significantly smaller and did not affect the primary resonance 

identification [2]. 
Mode shapes for the first three vibrational modes were 

constructed using data from additional accelerometers placed at 

five equally spaced points along the beam (x=0.1m, 0.2m, 0.3m, 

0.4m, 0.5m). The relative amplitudes and phase differences at 
each resonance frequency were normalized and plotted to 

visualize the spatial distribution of vibrations, as shown in 

Figure 3. The mode shapes confirmed theoretical predictions: 

1. First Mode (9.8 Hz): No nodes, with maximum 
deflection at the free end and zero displacement at the 

clamped end, resembling a smooth curve.  

2. Second Mode (61.5 Hz): One node (point of zero 

displacement) approximately at x = 0.35m, with 
deflections reversing direction on either side of the 

node.  

3. Third Mode (172.3 Hz): Two nodes at approximately x 

= 0.22m and x = 0.42m, with three distinct regions of 
alternating deflection. 

 

 
Figure 3: Mode shapes for the first three modes of the 

cantilever beam. 

 

These mode shapes were consistent with the theoretical 
shapes derived from the Euler-Bernoulli solution, reinforcing the 

validity of the experimental approach [1]. The accuracy of
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the mode shape measurements was enhanced by using high-
sensitivity accelerometers and a high sampling rate (1000 Hz), 

which captured subtle phase differences critical for mode shape 

construction [4]. 

Damping characteristics were analyzed using data from an 
impulse test, where the beam was subjected to a sudden force, 

and the decaying free vibration response was recorded. The 

logarithmic decrement method was applied to estimate the 

damping ratio ζ \zeta ζ, yielding a value of approximately 0.02 
for the first mode. This low damping ratio indicates that the beam 

exhibited lightly damped behavior, primarily influenced by air 

damping and minor material damping, as aluminum has low 

internal friction [3]. The damping ratio was slightly higher for 
the second and third modes (0.025 and 0.03, respectively), 

possibly due to increased interaction with air at higher 

frequencies. These values were used to refine the FRF analysis 

by incorporating damping into the theoretical model, improving 
the alignment between experimental and predicted amplitudes 

[4]. 

The results demonstrate the effectiveness of the 

experimental methodology in capturing the resonance behavior 
of the cantilever beam. The close agreement between 

experimental and theoretical frequencies underscores the 

reliability of the Euler-Bernoulli model for slender beams under 

linear elastic conditions [1]. The mode shapes provide valuable 
insights into the spatial dynamics of the beam, which are 

essential for applications where specific vibrational patterns 

must be avoided or harnessed, such as in sensors or structural 

components [2]. The damping analysis highlights the influence 
of environmental factors, which, while minor in this case, can be 

significant in other contexts, such as high-humidity 

environments or materials with higher internal damping [3]. 

These findings have practical implications for engineering 
design, where accurate prediction of resonance frequencies is 

crucial to prevent structural failures. For example, in aerospace 

applications, cantilever-like structures (e.g., aircraft wings) must 

be designed to avoid resonance with engine vibrations or 
aerodynamic forces [2]. Similarly, in MEMS, precise control of 

resonance frequencies is essential for sensor performance [4]. 

The results also serve as a robust dataset for educational 

purposes, illustrating fundamental concepts in vibration analysis 
and experimental mechanics [3]. 

 

 

4.0 DISCUSSION 
 

The experimental results provide a robust dataset for 

understanding the resonance behavior of a cantilever beam, with 
measured natural frequencies of 9.8 Hz, 61.5 Hz, and 172.3 Hz 

for the first three vibrational modes, closely aligning with 

theoretical predictions of 9.87 Hz, 61.8 Hz, and 172.9 Hz, 
respectively, based on Euler-Bernoulli beam theory [1]. The 

percentage differences, all below 1% (0.71%, 0.49%, and 

0.35%), confirm the accuracy of the experimental setup and the 

applicability of the theoretical model for slender beams under 
linear elastic conditions [1]. This section offers a detailed 

discussion of the findings, analyzing the agreement between 

experimental and theoretical results, exploring potential sources 

of discrepancies, and evaluating the implications for engineering 
applications. Additionally, it addresses the limitations of the 

study and its broader significance in the context of vibration 

analysis and structural design. 
The close agreement between experimental and theoretical 

frequencies validates the Euler-Bernoulli beam model, which 

assumes negligible shear deformation and rotary inertia, 

conditions well-suited to the aluminum beam used in this study 
(length-to-thickness ratio L/h≈166.67) [1]. The theoretical 

frequencies were calculated using the equation as shown in 

equation (1), where the beam’s properties (E = 70 GPa, I = 

4.5×10⁻¹¹ m⁴, μ = 0.162 kg/m, L = 0.5 m) and eigenvalues 
(β1=1.875, β2=4.694, β3=7.855) were precisely defined [1].The 

small discrepancies observed—0.07 Hz for the first mode, 0.3 

Hz for the second, and 0.6 Hz for the third—can be attributed to 

several practical factors not fully accounted for in the theoretical 
model. These include: 

1. Imperfect Clamping: The clamped end of the beam was 

secured to a rigid steel support, but minor flexibility in 

the clamp or uneven torque application could introduce 
additional compliance, slightly lowering the effective 

stiffness and thus the natural frequencies [2]. Finite 

element simulations of cantilever beams with imperfect 

boundary conditions have shown frequency reductions 
of up to 1% [2], consistent with the observed errors.  

2. Air Damping: The experiments were conducted in 

ambient air, which introduces viscous damping that 

affects the amplitude of resonance peaks and, to a lesser 
extent, the frequencies. While the damping ratio was 

estimated at approximately 0.02 for the first mode, air 

resistance could cause a minor shift in peak frequencies, 

particularly for higher modes where vibrational 
velocities are greater [3].  

3. Measurement Inaccuracies: The accelerometer (mass 

0.0012 kg) added a small mass to the beam, potentially 

lowering the natural frequencies slightly. Additionally, 
noise in the data acquisition system or calibration errors 

in the shaker’s force output could contribute to minor 

deviations [4]. The use of a high sampling rate (1000 Hz) 

and repeated trials mitigated these effects, but they could 
not be entirely eliminated.  

4. Material Variability: The aluminum beam’s material 

properties (Young’s modulus and density) were assumed 

uniform, but microstructural variations or manufacturing 
tolerances could introduce small discrepancies. For 

instance, a 1% variation in Young’s modulus could alter 

the theoretical frequencies by approximately 0.5% [1].  

The mode shapes, visualized in Figure 3, further corroborate 
the theoretical model. The first mode exhibited a smooth 

deflection curve with no nodes, the second mode showed one 

node at approximately x=0.35m, and the third mode displayed 

two nodes at x≈0.22m and x≈0.42m. These patterns align closely 
with the theoretical mode shapes derived from the Euler-

Bernoulli solution that shown in equation (2), where σn ensures 

boundary conditions are satisfied [1]. The experimental mode 
shapes were constructed using data from five accelerometers, 

providing high spatial resolution and confirming the expected 

number and position of nodes for each mode [2]. The slight 

deviations in node positions (e.g., ±0.02 m) could be due to 
accelerometer placement errors or minor nonlinear effects at 

higher amplitudes, as noted in studies of vibrating beams [2]. 

The damping analysis revealed a low damping ratio (ζ≈0.02
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for the first mode, increasing slightly to 0.025 and 0.03 for the 
second and third modes), indicating that the beam’s response 

was dominated by elastic behavior with minimal energy 

dissipation [3]. This is consistent with aluminum’s low internal 

damping and the controlled experimental environment, which 
minimized external damping sources like friction at the clamp. 

However, the slight increase in damping for higher modes 

suggests greater interaction with air at higher vibrational 

frequencies, where the beam’s motion generates more 
significant aerodynamic resistance [4].  

The implications of these findings are significant for 

engineering design, particularly in applications where resonance 

can lead to structural failure. For example, in aerospace 
engineering, cantilever-like structures such as aircraft wings or 

turbine blades must be designed to avoid resonance with 

operational frequencies, such as those induced by engine 

vibrations or aerodynamic forces [2]. The Tacoma Narrows 
Bridge collapse illustrates the catastrophic consequences of 

resonance, underscoring the need for accurate frequency 

predictions [3]. In microelectromechanical systems (MEMS), 

resonance is often harnessed for sensor functionality, but precise 
control of natural frequencies is required to ensure performance 

[2]. The close agreement between experimental and theoretical 

results in this study suggests that the Euler-Bernoulli model is a 

reliable tool for such applications, provided that boundary 
conditions and material properties are well-characterized. 

The experimental setup’s simplicity, using standard 

laboratory equipment like a shaker and accelerometers, makes it 

highly replicable and valuable for educational purposes. As 
noted by Crespo da Silva (2016), similar experiments can 

effectively demonstrate fundamental vibration concepts to 

students, bridging theoretical and practical understanding [2]. 

However, the study has limitations that warrant consideration: 
1. The Euler-Bernoulli model assumes linear elastic 

behavior, but at higher amplitudes, nonlinear effects 

(e.g., geometric nonlinearity or material nonlinearity) 

could become significant, particularly in MEMS 
applications where deflections are large relative to the 

beam’s thickness [2]. 

2. Only the first three modes were analyzed due to 

equipment limitations (e.g., shaker frequency range and 
accelerometer sensitivity). Higher modes could reveal 

additional insights, particularly for complex structures 

[2]. 

3. The experiments were conducted in ambient air, but 
variations in temperature or humidity could alter 

material properties or damping, affecting results in real-

world applications [4]. 

4. For very short or thick beams, shear deformation and 
rotary inertia (accounted for in Timoshenko beam 

theory) could affect frequency predictions, but these 

were negligible for the slender beam used here [1]. 
To address these limitations, future studies could incorporate 

nonlinear models, test beams with different geometries or 

materials (e.g., steel or composites), or conduct experiments in 

controlled environments (e.g., vacuum chambers) to eliminate 
air damping. Additionally, finite element analysis could 

complement experimental results by simulating imperfect 

boundary conditions or nonlinear effects [2]. The findings of this 

study provide a strong foundation for such extensions, 
contributing to the broader field of vibration analysis and 

supporting safer, more reliable engineering designs. 
 

 

5.0 CONCLUSION 
 

This study successfully examined the resonance behavior of a 

cantilever beam, meeting its goals of measuring natural 

frequencies, visualizing mode shapes, and confirming 
theoretical predictions. The experimental natural frequencies—

9.8 Hz, 61.5 Hz, and 172.3 Hz for the first three modes—were 

very close to the theoretical values of 9.87 Hz, 61.8 Hz, and 

172.9 Hz, with errors below 1% (0.71%, 0.49%, and 0.35%) [1]. 

The mode shapes, measured using accelerometers, matched 

expectations: the first mode had no nodes, the second had one 

node, and the third had two nodes [2]. This section summarizes 

the key findings, their importance, limitations, and suggestions 
for future work. 

Small differences between measured and predicted 

frequencies likely stem from minor clamping flexibility, air 

damping (damping ratio ~0.02), or slight measurement errors 
[3]. The experiment’s reliability was ensured by repeating tests 

three times, with consistent results. 

The mode shapes, shown in Figure 3, align with theoretical 

patterns, providing useful data for understanding how the beam 
vibrates. These findings are important for engineering, as 

resonance can cause failures in structures like bridges (e.g., 

Tacoma Narrows Bridge [3]) or aircraft wings, or affect 

performance in microelectromechanical systems (MEMS) [2]. 
The experiment, using simple equipment like a shaker and 

accelerometers, is easy to replicate and valuable for teaching 

vibration concepts [2]. 

However, the study has limitations. The Euler-Bernoulli 

model assumes linear behavior, which may not apply to large 

deflections or thicker beams [1]. Air damping slightly affected 

results, and only the first three modes were studied due to 

equipment limits [2]. Real-world factors like clamp flexibility or 
material variations were not fully modeled [3]. 

In conclusion, this study provides a comprehensive 

experimental analysis of resonance in a cantilever beam, 

achieving excellent agreement with theoretical predictions and 
offering valuable insights for engineering design and education. 

The validated methodology and detailed results contribute to the 

field of vibration analysis, supporting the development of safer 

and more reliable structures. By addressing the identified 
limitations and pursuing the recommended research directions, 

future studies can further advance the understanding of 

resonance phenomena, ensuring their effective management in 

diverse engineering applications. 
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