

Sigma Teknika, Vol. 8 No.2: 259-265 November 2025 E-ISSN 2599-0616 P-ISSN 2614-5979

PERANCANGAN SISTEM INFORMASI KERJA PRAKTEK DAN TUGAS AKHIR BERBASIS *WEBSITE* PADA PROGRAM STUDI TEKNIK INDUSTRI ITEBA MENGGUNAKAN PENDEKATAN *DATA FLOW DIAGRAM* (DFD)

Amirah Nova Khairiyah Pane¹⁾, Elsa Sri Erjuni Rumapea²⁾, Fadhilla Azzahra³⁾, Ibnu Anugrah⁴⁾, Siti Nur Maulidina⁵⁾, Dinda Okta Dwi Yanti Ridwan Gucci⁶⁾, Elsa Putri Pertiwi⁷⁾

^{1,2,3,4,5,6)} Program Studi Teknik Industri, Fakultas Teknologi Industri, Institut Teknologi Batam, The Vitka City Complex Jl. Gajah Mada, Tiban, Batam

⁷⁾ Program Studi Manajemen Rekayasa, Fakultas Teknologi Industri, Institut Teknologi Batam, The Vitka City Complex Jl. Gajah Mada, Tiban, Batam

Corresponding Author: amirah@iteba.ac.id

ABSTRAK

Proses administrasi Kerja Praktek (KP) dan Tugas Akhir (TA) pada Program Studi Teknik Industri ITEBA masih dilakukan secara manual, sehingga sering menimbulkan kendala dalam pendaftaran, pencatatan data, *monitoring progress* mahasiswa, serta komunikasi antara mahasiswa, dosen pembimbing, dan koordinator KP dan TA. Penelitian ini bertujuan untuk merancang sistem informasi berbasis *website* untuk mendukung pengelolaan KP dan TA yang lebih efisien, transparan, dan terstruktur. Metode yang digunakan adalah pemodelan sistem dengan pendekatan *Data Flow Diagram* (DFD) serta implementasi menggunakan Glide App. Hasil penelitian menghasilkan sistem informasi dengan fitur utama berupa pendaftaran *online*, unggah dokumen, *monitoring progress*, *dashboard* untuk mahasiswa, dosen, dan koordinator KP dan TA, pengarsipan dokumen digital. Uji fungsionalitas menunjukkan bahwa seluruh fitur berjalan sesuai kebutuhan, sementara hasil kuesioner kepuasan pengguna menunjukkan bahwa 85% mahasiswa, 90% dosen, dan 80% koordinator KP dan TA merasa sistem ini meningkatkan kemudahan, efisiensi, dan transparansi proses KP dan TA. Dengan demikian, sistem yang dikembangkan mampu mengatasi kendala administrasi manual dan dapat menjadi landasan untuk pengembangan sistem akademik digital yang lebih luas di masa mendatang.

Kata Kunci: Sistem Informasi; DFD; Kerja Praktek; Tugas Akhir

ABSTRACT

The administrative process of Kerja Praktek (KP) and Tugas Akhir (TA) in the Industrial Engineering Department ITEBA is still conducted manually, which often causes problems in registration, data recording, student progress monitoring, and communication between students, supervisors, and coordinators. This study aims to design a web-based information system to support more efficient, transparent, and structured KP and TA management. The method used is system modeling with the DFD approach and implemented with Glide App. The results produced an information system with key features such as online registration, document upload, progress monitoring, dashboards for students, supervisors, and coordinators, document archiving. Functionality testing showed that all features operated as required, while user satisfaction surveys indicated that 85% students, 90% supervisors, and 80% coordinators felt that the system improved convenience, efficiency, and transparency in KP and TA process. These findings indicate that the system successfully addresses manual administration issues and serves as a foundation for the future development of broader digital academic system.

Keywords: Information System; DFD; Internship; Final Project

Sigma Teknika, Vol. 8 No.2: 259-265 November 2025 E-ISSN 2599-0616 P-ISSN 2614-5979

1. PENDAHULUAN

Pendidikan tinggi dituntut mampu menghasilkan lulusan yang tidak hanya kompeten akademis, tetapi secara juga memiliki keterampilan praktis yang relevan dengan kebutuhan industri. Dalam konteks Program Studi Teknik Industri, kegiatan Kerja Praktek (KP) dan Tugas Akhir (TA) merupakan dua komponen penting untuk memastikan mahasiswa memiliki pengalaman nyata dalam penerapan ilmu serta kemampuan menyelesaikan masalah industri melalui pendekatan ilmiah. Namun, efektivitas kedua kegiatan tersebut sangat bergantung pada sistem administrasi dan manajemen akademik yang mendukungnya.

Pada banyak perguruan tinggi, termasuk Institut Teknologi Batam (ITEBA), pengelolaan KP dan TA masih dilakukan secara manual dengan formulir fisik atau komunikasi terpisah melalui e-mail. Kondisi ini menimbulkan sejumlah kendala, keterlambatan seperti pendaftaran, risiko kesalahan pencatatan data, keterbatasan akses informasi, serta kesulitan dalam monitoring perkembangan mahasiswa. Dosen pembimbing juga menghadapi tantangan dalam memberikan bimbingan karena tidak tersedia sistem terpusat yang memungkinkan evaluasi progres secara real-time. Selain itu, pengarsipan ketiadaan sistem menyebabkan dokumen penting tersebar di berbagai platform, sehingga sulit diakses kembali untuk keperluan evaluasi maupun referensi akademik.

Sejumlah penelitian terdahulu telah mengembangkan sistem informasi untuk mendukung pengelolaan akademik, baik dalam bentuk sistem pendaftaran, monitoring, maupun pengarsipan digital. Namun, sebagian besar penelitian masih terbatas pada konteks tertentu dan belum mengintegrasikan seluruh proses administrasi KP dan TA secara menyeluruh. Hal ini menunjukkan adanya kebutuhan akan sistem informasi yang dirancang secara terstruktur, dengan pendekatan pemodelan yang jelas, serta mampu diimplementasikan secara praktis dalam skala program studi.

Berdasarkan permasalahan tersebut. penelitian ini merancang sistem informasi berbasis website untuk mendukung pengelolaan KP dan TA di Program Studi Teknik Industri ITEBA. Pendekatan Data Flow Diagram (DFD) digunakan untuk memodelkan aliran data agar kebutuhan pengguna dapat teridentifikasi dengan baik, sementara implementasi sistem dilakukan menggunakan platform Glide App. Sistem ini mencakup fitur pendaftaran online, pengunggahan monitoring progres mahasiswa, dokumen, dashboard untuk mahasiswa-dosen-koordinator, hingga pengarsipan digital.

Tujuan penelitian ini adalah merancang dan mengimplementasikan sistem informasi berbasis website yang mampu meningkatkan efisiensi transparansi administrasi. informasi. kemudahan akses bagi seluruh pihak yang terlibat dalam pengelolaan KP dan TA. Kontribusi ini penelitian diharapkan tidak hanya menyelesaikan permasalahan administrasi manual di lingkungan ITEBA, tetapi juga menjadi referensi bagi pengembangan sistem akademik digital di perguruan tinggi lainnya.

2. TINJAUAN PUSTAKA

2.1. Perancangan Sistem Informasi

Perancangan Sistem Informasi adalah suatu tahap proses yang dilakukan seseorang atau kelompok selama proses desain atau pembuatan sistem sebelum sistem dibangun; tujuan dari pembuatan sistem ini adalah untuk memecahkan atau memenuhi kebutuhan pengguna untuk pengolahan, pengelolaan, dan perolehan informasi yang diinginkan [1].

Sistem Informasi merupakan suatu kesatuan yang terdiri dari berbagai komponen yang saling berinteraksi untuk mengumpulkan, mengolah, menyimpan, dan mendistribusikan data guna menghasilkan informasi yang bermanfaat dalam mendukung pengambilan keputusan serta pencapaian tujuan tertentu. Komponen utama dalam sistem informasi mencakup manusia, perangkat keras (komputer dan infrastruktur jaringan), perangkat lunak, teknologi informasi, prosedur kerja, serta basis data yang digunakan

untuk mengelola informasi secara sistematis dan efisien [2].

Manusia berperan sebagai pengguna utama sistem informasi, yang dapat dikategorikan menjadi *end-user* (pengguna akhir) dan administrator sistem yang bertanggung jawab dalam operasional dan pemeliharaan sistem. Perangkat keras mencakup komputer, *server*, jaringan, serta perangkat lain yang digunakan untuk menjalankan dan mendukung sistem informasi, sementara perangkat lunak meliputi aplikasi, sistem operasi, serta perangkat lunak pendukung yang memungkinkan pemrosesan data secara otomatis.

Selain itu, teknologi informasi berperan sebagai sarana dalam pemrosesan, penyimpanan, serta distribusi informasi dengan memanfaatkan berbagai platform digital, termasuk *Cloud Computing* dan *Database Management System* (DBMS). Prosedur kerja juga menjadi bagian penting dalam sistem informasi, karena menentukan standar operasional yang memastikan integritas data, efisiensi kerja, serta keamanan informasi yang diproses dalam sistem.

Dengan adanya integrasi dari seluruh komponen tersebut, sistem informasi mampu mengelola data secara efektif, mengubahnya informasi menjadi yang bernilai. menyediakan wawasan yang dapat digunakan untuk mendukung pengambilan keputusan, baik dalam skala organisasi, bisnis, maupun instansi pemerintahan. Oleh karena itu, sistem informasi menjadi elemen fundamental dalam mendukung transformasi digital serta meningkatkan produktivitas dalam berbagai bidang.

2.2 Data Flow Diagram (DFD)

DFD adalah teknik pemodelan sistem yang menawarkan gambaran visual tentang aliran data dalam suatu sistem. DFD membantu kita memahami cara data diproses, disimpan, dan mengalir melalui sistem informasi [1].

DFD sangat membantu dalam tahap analisis dan perancangan sistem karena memungkinkan pengembang dan pemangku kepentingan untuk memahami sistem sebelum implementasi teknis dilakukan. Karena hanya menampilkan representasi visual dari alur data daripada kode pemrograman, diagram ini mudah dipahami

Sigma Teknika, Vol. 8 No.2: 259-265 November 2025 E-ISSN 2599-0616 P-ISSN 2614-5979

bahkan oleh orang yang tidak ahli dalam pemrograman [3].

2.3 Komponen Data Flow Diagram

DFD memiliki beberapa komponen utama yang digunakan untuk menggambarkan bagaimana data mengalir dalam sistem. Berikut adalah komponen-komponen tersebut beserta fungsinya:

1. Proses (*Process*)

Proses adalah elemen utama dalam DFD yang merepresentasikan aktivitas yang dilakukan oleh sistem untuk mengolah data. Proses dalam DFD biasanya digambarkan dalam bentuk lingkaran atau persegi panjang dengan sudut melengkung. Setiap proses memiliki nama yang jelas, biasanya menggunakan kerja, "Memproses seperti Transaksi" "Mengelola atau Data Mahasiswa".

2. Aliran Data (Data Flow)

Aliran data menunjukkan bagaimana data berpindah dari satu komponen ke komponen lainnya dalam sistem. *Data flow* digambarkan dengan panah dan biasanya diberi label untuk menunjukkan jenis informasi yang mengalir di dalam sistem. Aliran data dapat menghubungkan proses dengan entitas eksternal, proses dengan *database*, atau proses dengan proses lainnya.

3. Penyimpanan Data (*Data Store*)

Penyimpanan data atau *data store* merupakan tempat di mana data disimpan dalam sistem. Data store digambarkan sebagai dua garis sejajar dan diberi nama sesuai dengan data yang disimpan, misalnya "Database Mahasiswa" atau "Arsip Transaksi". *Data store* dapat berfungsi sebagai tempat penyimpanan sementara atau permanen dalam sistem.

4. Entitas Eksternal (External Entity)

Entitas eksternal adalah objek atau pihak di luar sistem yang berinteraksi dengan sistem, baik sebagai sumber data maupun tujuan akhir data. Entitas ini biasanya digambarkan dengan bentuk persegi dan diberi label sesuai dengan perannya,

misalnya "Mahasiswa", "Admin", atau "Bank".

2.4 Manfaat Data Flow Diagram

DFD memiliki banyak manfaat dalam perancangan sistem informasi, antara lain:

- 1. Meningkatkan pemahaman terhadap sistem. Dengan DFD, semua pemangku kepentingan, termasuk pengembang, pengguna, dan manajer proyek, dapat memahami bagaimana sistem bekerja tanpa perlu memahami aspek teknis yang rumit.
- Membantu dalam analisis dan perbaikan system. DFD memungkinkan pengembang sistem untuk mengidentifikasi potensi masalah dalam aliran data, seperti redundansi data, kemacetan informasi, atau celah dalam sistem.
- 3. Mempermudah dokumentasi dan komunikasi. DFD berfungsi sebagai dokumentasi visual yang memudahkan komunikasi antara tim pengembang dan pemangku kepentingan lainnya, termasuk klien atau manajemen.
- 4. Mendukung proses pengembangan sistem yang lebih terstruktur. Dengan menggunakan DFD, pengembang dapat merancang sistem secara lebih sistematis dan terstruktur, sehingga mempermudah proses implementasi dan pemeliharaan sistem di masa mendatang.

2.5 Kerja Praktek (KP) dan Tugas Akhir (TA)

Dalam dunia akademik, Kerja Praktek (KP) dan Tugas Akhir (TA) merupakan dua komponen penting dalam kurikulum pendidikan tinggi, khususnya bagi mahasiswa yang menempuh jenjang sarjana. Kerja Praktek bertujuan untuk memberikan pengalaman langsung kepada mahasiswa dalam dunia industri atau lingkungan profesional yang relevan dengan bidang studinya. Sementara itu, Tugas Akhir berfungsi sebagai bentuk penelitian atau proyek akhir yang mengintegrasikan ilmu yang telah diperoleh selama masa studi untuk menyelesaikan suatu permasalahan nyata.

Sigma Teknika, Vol. 8 No.2: 259-265 November 2025 E-ISSN 2599-0616 P-ISSN 2614-5979

Perancangan sistem informasi Kerja Praktek (KP) dan Tugas Akhir (TA) berbasis website menjadi sebuah kebutuhan mendesak dalam dunia akademik, terutama di perguruan tinggi yang ingin meningkatkan efisiensi dan efektivitas pengelolaan administrasi akademik. Saat ini, banyak perguruan tinggi masih menggunakan metode manual atau semi-digital dalam mengelola kerja praktek dan tugas akhir, yang sering kali menyebabkan berbagai permasalahan seperti keterlambatan dalam pengajuan, kesulitan monitoring progres mahasiswa, serta kurangnya transparansi dalam bimbingan dan evaluasi. Selain itu, pengelolaan dokumen yang tersebar di berbagai platform atau dalam bentuk fisik membuat pencarian data menjadi tidak efektif dan berisiko tinggi terhadap kehilangan informasi penting.

Dengan adanya sistem berbasis website, berbagai kendala tersebut dapat diatasi melalui otomatisasi proses administrasi, peningkatan aksesibilitas, serta sentralisasi data dalam satu platform yang terintegrasi. Mahasiswa dapat dengan mudah melakukan pendaftaran kerja praktek dan tugas akhir, mengunggah dokumen, serta melacak status pengajuan mereka secara real-time. Di sisi lain, dosen pembimbing dapat perkembangan mahasiswa, memantau memberikan feedback secara langsung melalui sistem, serta mengelola jadwal bimbingan dan seminar dengan lebih terstruktur. Notifikasi otomatis juga menjadi fitur penting dalam sistem ini, dimana mahasiswa akan mendapatkan pengingat terkait tenggat waktu pengumpulan laporan, jadwal bimbingan, hingga sidang akhir, sehingga meminimalisir risiko keterlambatan.

5. METODE PENELITIAN

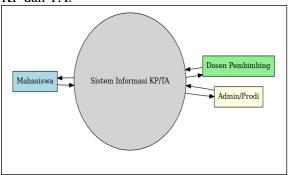
Penelitian ini menggunakan pendekatan perancangan sistem informasi berbasis website dengan memanfaatkan metode pemodelan Data Flow Diagram (DFD). Desain penelitian dilakukan secara deskriptif dan rekayasa sistem (system development), dengan tahapan yang meliputi studi literatur, identifikasi masalah, pengumpulan data, analisis sistem, perancangan prototype, implementasi, serta pengujian.

Studi literatur dilakukan untuk memperoleh pemahaman mengenai konsep perancangan sistem informasi, metode DFD, serta penelitian terdahulu

yang relevan. Tahap identifikasi masalah dilakukan melalui observasi dan wawancara dengan mahasiswa, dosen pembimbing, dan koordinator KP dan TA Program Studi Teknik Industri Institut Teknologi Batam (ITEBA). Hasil identifikasi menunjukkan permasalahan utama berupa proses administrasi Kerja Praktek (KP) dan Tugas Akhir (TA) yang masih manual, keterbatasan akses informasi, serta ketiadaan sistem pengarsipan digital yang terpusat.

Pengumpulan data dilakukan dengan mendokumentasikan alur administrasi KP dan TA, persyaratan dan dokumen yang diperlukan, rumpun keilmuan dosen pembimbing, serta mekanisme seminar hingga sidang akhir. Data tersebut dianalisis untuk merumuskan kebutuhan sistem (system requirements) dari tiga pihak pengguna utama, yaitu mahasiswa, dosen pembimbing, dan koordinator KP dan TA.

Tahap perancangan sistem dilakukan menggunakan pendekatan DFD untuk memodelkan alur data dan hubungan antar entitas. Selain itu, rancangan basis data dan antarmuka pengguna juga dikembangkan untuk mendukung implementasi sistem. *Prototype* sistem kemudian dibangun menggunakan *platform* Glide App sehingga dapat diakses melalui *browser*.


Implementasi sistem melibatkan pengguna awal (mahasiswa, dosen pembimbing, dan koordinator KP dan TA) untuk melakukan uji coba terbatas. Pengujian dilakukan melalui dua metode: 1. uji fungsionalitas untuk memastikan seluruh fitur sistem berjalan sesuai dengan kebutuhan; 2. uji kepuasan pengguna menggunakan kuesioner. Data hasil pengujian dianalisis secara deskriptif untuk mengevaluasi efektivitas, efisiensi, dan transparansi sistem yang dikembangkan.

6. HASIL DAN PEMBAHASAN

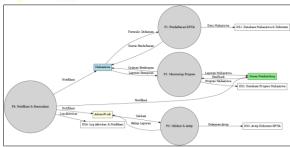
Hasil Perancangan Sistem: Penelitian ini menghasilkan sistem informasi Kerja Praktek (KP) dan Tugas Akhir (TA) berbasis website yang dirancang untuk mengatasi permasalahan administrasi manual di Program Studi Teknik Industri ITEBA. Perancangan sistem dilakukan dengan pendekatan Data Flow Diagram (DFD) untuk memodelkan alur data. Pada DFD Level 0, sistem menggambarkan interaksi utama antara

Sigma Teknika, Vol. 8 No.2: 259-265 November 2025 E-ISSN 2599-0616 P-ISSN 2614-5979

mahasiswa, dosen pembimbing, dan koordinator KP dan TA.

Gambar 1. DFD Level 0

Adapun **Gambar 1.** menggambarkan hubungan antara sistem informasi KP/TA dengan tiga entitas eksternal utama, yaitu mahasiswa, dosen pembimbing, dan admin/Prodi. Pada level ini, sistem diperlakukan sebagai satu proses tunggal yang menerima dan mengolah data yang masuk dari masing-masing entitas, kemudian menghasilkan keluaran sesuai kebutuhan.


Mahasiswa berinteraksi dengan sistem melalui proses pendaftaran KP/TA serta pengunggahan dokumen, seperti proposal, laporan, dan berkas administrasi lainnya. Sistem kemudian memberikan umpan balik kepada mahasiswa berupa informasi status pendaftaran, hasil validasi, serta perkembangan proses KP/TA yang sedang dijalankan.

Dosen pembimbing berperan memberikan bimbingan akademik kepada mahasiswa melalui sistem. Interaksi yang terjadi meliputi pemberian catatan bimbingan, revisi dokumen, serta evaluasi kemajuan mahasiswa. Sistem menyediakan akses informasi yang dibutuhkan dosen, seperti dokumen mahasiswa dan riwayat bimbingan.

Sementara itu, admin/Prodi berfungsi sebagai pengelola administrasi KP/TA. Entitas ini melakukan verifikasi data pendaftaran, penetapan dosen pembimbing, serta pengelolaan arsip dan dokumen KP/TA. Sistem menyediakan data yang diperlukan admin/Prodi untuk pengambilan keputusan dan pencatatan administratif.

Pada DFD Level 1, detail proses diperluas mencakup pendaftaran *online*, validasi data, pengunggahan dokumen, *monitoring progress*, serta pengarsipan laporan.

Gambar 2. DFD Level 1

Adapun **Gambar 2**. menggambarkan pemecahan proses utama pada Sistem Informasi KP/TA menjadi beberapa subproses yang saling terhubung. Pada level ini, aliran data antara mahasiswa, dosen pembimbing, dan admin/prodi dijelaskan secara lebih rinci, termasuk hubungan setiap proses dengan data store yang digunakan.

Proses P1: Pendaftaran KP/TA, zzmenerima data pendaftaran dari mahasiswa, seperti formulir pengajuan dan dokumen pendukung. Data tersebut dicatat dan disimpan ke dalam *Database* Mahasiswa & Dokumen (DS1) sebagai dasar untuk proses verifikasi selanjutnya. Sistem mengirimkan keluaran berupa notifikasi pendaftaran kepada mahasiswa.

Proses P2: *Monitoring Progress*, mengelola aktivitas bimbingan antara mahasiswa dan dosen pembimbing. Mahasiswa mengunggah laporan perkembangan, sementara dosen pembimbing memberikan catatan bimbingan dan persetujuan. Seluruh informasi perkembangan mahasiswa disimpan dalam *Database Progress Mahasiswa* (DS2), yang kemudian menjadi referensi bagi mahasiswa maupun dosen pada bimbingan berikutnya.

Proses P3: Validasi & Verifikasi, dilakukan oleh Admin/Prodi untuk memastikan bahwa dokumen KP/TA mahasiswa telah lengkap dan sesuai ketentuan. Admin memeriksa laporan, lembar bimbingan, dan dokumen administratif lainnya. Hasil validasi disimpan dalam Arsip Dokumen KP/TA (DS3), dan mahasiswa memperoleh informasi terkait status validasi sebagai syarat menuju tahapan seminar atau sidang.

Proses P4: Seminar & Sidang, mengelola pengajuan jadwal seminar atau sidang yang dilakukan oleh mahasiswa. Admin/Prodi menerima pengajuan, melakukan penjadwalan, dan menyimpan informasi tersebut dalam Data Seminar & Sidang (DS4). Sistem menghasilkan

Sigma Teknika, Vol. 8 No.2: 259-265 November 2025 E-ISSN 2599-0616 P-ISSN 2614-5979

keluaran berupa notifikasi jadwal kepada mahasiswa dan dosen pembimbing.

Sistem yang dikembangkan mencakup beberapa fitur utama, yaitu:

- 1. Pendaftaran *online* bagi mahasiswa untuk KP/TA;
- 2. *Dashboard* mahasiswa yang menampilkan status pendaftaran, progres bimbingan, dan dokumen;
- 3. *Dashboard* dosen pembimbing untuk monitoring, pemberian umpan balik, dan evaluasi laporan;
- 4. *Dashboard* koordinator KP dan TA untuk verifikasi data, validasi dokumen, dan pengarsipan digital;
- 5. Notifikasi otomatis untuk mengingatkan mahasiswa terkait jadwal bimbingan, seminar, dan sidang.

Implementasi sistem dilakukan menggunakan *platform* Glide App yang dapat diakses melalui *browser* dengan alamat web: https://kpta-tiiteba.glide.page.

Gambar 3. Tampilan Awal Web

Pembahasan: Hasil penelitian ini menunjukkan bahwa penerapan sistem informasi berbasis website mampu meningkatkan efisiensi, transparansi, dan kemudahan akses pengelolaan KP dan TA. Dari sisi mahasiswa, sistem menyediakan informasi yang lebih jelas mengenai tahapan KP dan TA serta memfasilitasi pengunggahan dokumen dan pemantauan progres secara real-time. Dari sisi dosen pembimbing, sistem mempermudah monitoring bimbingan dan mempercepat proses pemberian umpan balik. Sementara itu, bagi koordinator KP dan TA, sistem membantu mengurangi beban administrasi manual melalui pengarsipan digital yang lebih terstruktur.

Hasil ini konsisten dengan penelitian sebelumnya yang menekankan pentingnya pemanfaatan teknologi informasi dalam pengelolaan akademik. Namun demikian, terdapat beberapa keterbatasan, yaitu sistem belum

terintegrasi dengan sistem akademik kampus (SIAKAD), uji coba masih terbatas pada lingkup prodi, serta belum mencakup fitur lanjutan seperti penjadwalan sidang otomatis dan pengolahan nilai akhir. Keterbatasan ini membuka peluang untuk pengembangan lebih lanjut di masa depan, termasuk integrasi dengan aplikasi *mobile* dan sistem akademik utama kampus.

7. KESIMPULAN DAN SARAN

Penelitian ini berhasil merancang dan mengimplementasikan sistem informasi Kerja Praktek (KP) dan Tugas Akhir (TA) berbasis website di Program Studi Teknik Industri ITEBA dengan menggunakan pendekatan Data Flow Diagram (DFD). Sistem yang dikembangkan menyediakan fitur utama berupa pendaftaran online, pengunggahan dokumen, dashboard pengguna (mahasiswa, dosen pembimbing, dan koordinator KP dan TA), monitoring progress, notifikasi, serta pengarsipan digital.

Hasil uji fungsionalitas menunjukkan bahwa seluruh fitur sistem dapat berjalan sesuai kebutuhan pengguna. Selain itu, hasil kuesioner menunjukkan tingkat kepuasan yang tinggi, yaitu 85% mahasiswa merasa sistem mempermudah administrasi KP dan TA, 90% dosen menilai sistem membantu proses *monitoring*, dan 80% koordinator KP dan TA menyatakan sistem mempercepat proses validasi serta pengarsipan dokumen.

Dengan demikian, sistem informasi yang dirancang mampu meningkatkan efisiensi, transparansi, dan kemudahan akses dalam pengelolaan KP dan TA. Penelitian ini berkontribusi sebagai solusi praktis dalam digitalisasi administrasi akademik, sekaligus dapat dijadikan acuan bagi pengembangan sistem serupa di perguruan tinggi lainnya.

Keterbatasan penelitian terletak pada belum terintegrasinya sistem dengan sistem akademik utama (SIAKAD), lingkup uji coba yang masih terbatas, serta ketiadaan fitur lanjutan seperti penjadwalan sidang otomatis dan pengolahan nilai. Oleh karena itu, penelitian selanjutnya disarankan untuk mengintegrasikan sistem dengan platform akademik kampus, memperluas uji coba, serta mengembangkan fitur tambahan guna meningkatkan fungsionalitas sistem.

Sigma Teknika, Vol. 8 No.2: 259-265 November 2025 E-ISSN 2599-0616 P-ISSN 2614-5979

UCAPAN TERIMA KASIH

Ucapan terima kasih kepada seluruh *partner* dalam Pengabdian yang telah turut berpartisipasi dan mahasiswa. Kemudian juga kepada LPPM Institut Teknologi Batam yang telah memberikan bantuan pendanaan selama penelitian, hal ini sesuai pada surat tugas dengan nomor 005/LPPM/ST/PEN/III/2025.

DAFTAR PUSTAKA

- [1] I. H. S. P. Dedi Dermawan, "Perancangan Sistem Informasi Pendaftaran Praktik Kerja Lapangan (PKL) Pada Kantor DPRD Kota Palembang," in *Prosiding Seminar Nasional* Sains dan Teknologi Seri 02, Online, 2024.
- [2] B. A. M. I Putu Gede Budayasa, "Rancang Bangun Sistem Informasi Pengajuan Tugas Akhir Pada STMIK STIKOM Indonesia Dengan Vector Space Model Information Retrieval," *Jurnal Ilmu Komputer dan Sains Terapan*, vol. 7, no. 01, pp. 01-06, 2016.
- [3] C. E. G. Muhammad Rahmadan, "Perancangan Data Flow Diagram Aplikasi Tabungan Sampah PT Pusri Palembang," in Prosiding Seminar Nasional Mini Riset Mahasiswa, Gorontalo, 2024.
- [4] D. Satria, Buku Ajar Analisis dan Perancangan Sistem Informasi, Purbalingga: Eureka Media Aksara, 2023.
- [5] R. B. F. H D Yulianto, "Perancangan Sistem Informasi Monitoring Magang," *Indonesian Journal on Information System*, vol. 06, no. 02, pp. 130 - 136, 2021.
- [6] M. A. H. I. Muliadi, "Perancangan Sistem Informasi Pemesanan Kamar Hotel Berbasis Website (WEB) Menggunakan Data Flow Diagram (DFD)," *Jurnal Integrasi Sistem Industri*, vol. 07, no. 02, pp. 111 - 122, 2020.