Analisis Kekerabatan Populasi Drosophila di Besuki, Bangil, dan Lumajang Berdasarkan Karakter Morfologi

Lisa Savitri, Kharisul Ihsan, Rochmad Krissanjaya

Abstract


Penelitian ini bertujuan untuk mengkaji hubungan kekerabatan populasi Drosophila dari tiga lokasi di Jawa Timur, yaitu Besuki, Bangil, dan Lumajang, berdasarkan karakter morfologi. Sampel diperoleh melalui penangkapan langsung dan diamati menggunakan parameter panjang tubuh, lebar sayap, dan intensitas pigmen. Analisis deskriptif, Principal Component Analysis (PCA), dan analisis klaster digunakan untuk menentukan pola variasi dan kedekatan morfologi antar populasi. Hasil penelitian menunjukkan adanya variasi signifikan pada ketiga parameter, di mana populasi Besuki dan Bangil menunjukkan ukuran tubuh lebih besar dibandingkan Lumajang. Pigmentasi tubuh populasi Bangil lebih gelap dibandingkan dua lokasi lainnya. Analisis PCA dan klaster menunjukkan kedekatan kekerabatan Besuki–Bangil, sedangkan Lumajang membentuk kelompok tersendiri. Variasi ini diduga dipengaruhi oleh kondisi lingkungan lokal, faktor genetik, dan aspek biotik. Hasil penelitian ini menegaskan potensi penggunaan morfologi Drosophila sebagai indikator awal hubungan kekerabatan dan adaptasi lokal.

Keywords


Drosophila, morfologi, kekerabatan, Jawa Timur, variasi fenotipik

Full Text:

PDF

References


Bross, T. G. (2023). Behavioral, physical, and demographic changes in Drosophila melanogaster under dietary restriction. Aging Cell, 22(2), e13796. https://doi.org/10.1111/acel.13796

Buffry, A. D., Currea, J. P., Franke-Gerth, F. A., Parker, H., Mirth, C. K., & Benton, R. (2024). Evolution of compound eye morphology underlies differences in vision between closely related Drosophila species. BMC Biology, 22, 67. https://doi.org/10.1186/s12915-024-01767-y

Feng, S., DeGrey, S. P., Guédot, C., Schoville, S. D., & Pool, J. E. (2024). Genomic diversity illuminates the environmental adaptation of Drosophila suzukii. Genome Biology and Evolution. https://doi.org/10.1093/gbe/evae107

Flaibani, N., Ortiz, V. E., Fanara, J. J., & Carreira, V. P. (2024). The relationship between morphology and flight in Drosophila: A study of two pairs of sibling species from a natural population. Insect Science, 31(3), 885–900. https://doi.org/10.1111/1744-7917.13258

Garg, D., Dhotre, K., Mayekar, H. V., Grewal, R. S., & Rajpurohit, S. (2024). Structural colouration in Drosophila wings is thermally plastic and exhibits ecological variation. Frontiers in Ecology and Evolution, 12, 1454212. https://doi.org/10.3389/fevo.2024.1454212

Jardeleza, M. K. G., Koch, J. B., Pearse, I., Ghalambor, C. K., & Hufbauer, R. A. (2024). The roles of phenotypic plasticity and adaptation in morphology and performance of an invasive species in a novel environment. Ecological Entomology. https://doi.org/10.1111/een.13368

Mokosuli, Y. S., & Sumampouw, H. M. (2023). The genetic diversity of Drosophila flies based on cytochrome-c oxidase subunit 1 gene from North Sulawesi. Advancements in Life Sciences. https://doi.org/10.5281/zenodo.8125179

Mudunuri, S., Chatterjee, S., Ramesh, R., & Kunte, K. (2024). Diet-induced plasticity of life-history traits and gene expression in outbred Drosophila melanogaster population. Ecology and Evolution. https://doi.org/10.1002/ece3.11234

“Drosophila—A model system for developmental biology.” (2024). Journal of Developmental Biology, 12(2), 15. https://doi.org/10.3390/jdb12020015

Rodríguez-Trelles, F., & Tarrío, R. (2024). Acceleration of Drosophila subobscura evolutionary response to global warming in Europe. Nature Climate Change, 14, 1101–1106. https://doi.org/10.1038/s41558-024-01987-9

Saadjad, Y. P., Sartini, S., Chairatunnisa, R., Latada, N. P., Mudjahid, M., & Nainu, F. (2024). Gut microbiota dynamics and phenotypic changes induced by tetracycline in Drosophila melanogaster. Indonesian Journal of Pharmacy, 35(3), 437–450. https://doi.org/10.14499/indonesianjpharm35iss3pp437

Santos, V. A. C. L., Garcia, A. C. L., & Montes, M. A. (2024). Adaptation to different temperatures results in wing size divergence of the invading species Drosophila nasuta in Brazil. Bulletin of Entomological Research. https://doi.org/10.1017/S0007485324000223

Urban ecology of Drosophila suzukii. (2024). Urban Ecosystems, 27, 1983–2004. https://doi.org/10.1007/s11252-024-01554-7

“Footprints of worldwide adaptation in structured populations of Drosophila melanogaster through the expanded DEST 2.0 genomic

resource.” (2025). Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msaf015

Wilcox, A. S. (2023). Genetic variation of morphological scaling in Drosophila. Nature Communications, 14(1), 1–10. https://doi.org/10.1038/s41467-023-38344-3

Wilcox, H. (2023). Environmental influence on morphological variation in Drosophila melanogaster. Journal of Evolutionary Biology, 36(5), 987–1001. https://doi.org/10.1111/jeb.13811

Yildirim, Y., Kristensson, D., & Outomuro, D. (2024). Phylogeography and phenotypic wing shape variation in a damselfly across populations in Europe. BMC Ecology and Evolution, 24, 19. https://doi.org/10.1186/s12862-024-02212-1

Yukilevich, R. R. (2023). African morphology, behavior and pheromones underlie sexual isolation in Drosophila melanogaster. Journal of Evolutionary Biology, 36(4), 789–803. https://doi.org/10.1111/jeb.13789




DOI: https://doi.org/10.33373/simbiosa.v14i2.8415

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.