Pengambilan keputusan instruksional calon guru matematika: Studi kasus pada perencanaan pembelajaran Persamaan Garis Lurus

Syaiful Hadi, Nadya Alvi Rahma

Abstract


Tujuan dalam penelitian ini adalah menganalisis peran mahasiswa calon guru matematika dalam merencakan tindakan sesuai dengan komponen pengambilan keputusan dalam konteks pembelajaran di kelas. Penelitian ini menggunakan pendekatan kualitatif dengan metode studi kasus. Subjek penelitian adalah mahasiswa Program Studi Tadris Matematika UIN Sayyid Ali Rahmatullah Tulungagung yang sedang melaksanakan Magang di SMPN 1 Sumber Gempol, dipilih melalui purposive sampling. Pengumpulan data dilakukan melalui wawancara semi-terstruktur, observasi, dan dokumentasi dengan peneliti sebagai instrumen utama. Prosedur penelitian meliputi empat tahap: persiapan, pelaksanaan, analisis data, dan pelaporan. Analisis data terdiri dari kondensasi data, penyajian data, serta penarikan kesimpulan dan verifikasi, diintegrasikan dengan analisis tematik Braun dan Clarke serta model pengambilan keputusan guru Schoenfeld. Dalam merencanakan Tindakan subjek melibatkan tiga proses utama dalam memberikan penjelasan instruksional materi persamaan garis lurus. Dalam kegiatan menghasilkan ide, subjek mengumpulkan informasi berupa ide yang relevan untuk pengembangan alternatif. Dalam mengklarifikasi ide subjek menganalisis ide dengan menguraikan informasi menjadi kategori untuk setiap ide utama yang dihasilkan. Ide mengenai kemampuan penguasaan konsep siswa, misalnya, dibagi menjadi konsep awal dan baru, kemudian dikelompokkan menjadi kategori kemampuan tinggi, sedang, dan rendah. Dalam menilai kewajaran ide, subjek melakukan analisis dan penilaian terhadap berbagai informasi ide yang dihasilkan, lalu menyintesisnya untuk mengambil keputusan pemilihan tindakan guna mencapai tujuan. Pada proses ini, subjek fokus pada dua sub-materi yang akan dipelajari, yaitu proses menggambar dan mengonstruksi rumus persamaan dan gradien garis lurus.

Keywords


merencanakan tindakan, pengambilan keputusan, penjelasan intruksional

Full Text:

PDF

References


Ackermans, K., Rusman, E., Brand-Gruwel, S., & Specht, M. (2019). Solving instructional design dilemmas to develop a Video Enhanced Rubric with modeling examples to support mental model development of complex skills: the Viewbrics-project use case. Educational Technology Research and Development, 67(4), 983–1002. https://doi.org/10.1007/s11423-019-09668-1

Andersson, C., & Palm, T. (2017). The impact of formative assessment on student achievement: A study of the effects of changes to classroom practice after a comprehensive professional development programme. Learning and instruction, 49, 92–102.

Blomeke, S., Gustafsson, J. E., & Shavelson, R. (2015). Beyond dichotomies: Competence viewed as a continuum. Zeitschrift für Psychologie, 223(1), 3–13.

Blömeke, S., Hoth, J., Döhrmann, M., Busse, A., Kaiser, G., & König, J. (2015). Teacher Change During Induction: Development of Beginning Primary Teachers’ Knowledge, Beliefs and Performance. International Journal of Science and Mathematics Education, 13(2), 287–308. https://doi.org/10.1007/s10763-015-9619-4

Blömeke, S., Kaiser, G., König, J., & Jentsch, A. (2020). Profiles of mathematics teachers’ competence and their relation to instructional quality. ZDM, 52(2), 329–342. https://doi.org/10.1007/s11858-020-01128-y

Braun, V., & Clarke, V. (2019). Reflecting on reflexive thematic analysis. Qualitative Research in Sport, Exercise and Health, 11(4), 589–597. https://doi.org/10.1080/2159676X.2019.1628806

Castro Superfine, A., & Li, W. (2014). Exploring the Mathematical Knowledge Needed for Teaching Teachers. Journal of Teacher Education, 65(4), 303–314. https://doi.org/10.1177/0022487114534265

Creswell, W. J., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.

Ding, M., Hassler, R., & Li, X. (2021). Cognitive instructional principles in elementary mathematics classrooms: A case of teaching inverse relations. International journal of mathematical education in science and technology, 52(8), 1195–1224.

Dyer, E. B., & Sherin, M. G. (2016). Instructional reasoning about interpretations of student thinking that supports responsive teaching in secondary mathematics. ZDM, 48(1–2), 69–82. https://doi.org/10.1007/s11858-015-0740-1

Fauth, B., Decristan, J., Decker, A.-T., Büttner, G., Hardy, I., Klieme, E., & Kunter, M. (2019). The effects of teacher competence on student outcomes in elementary science education: The mediating role of teaching quality. Teaching and Teacher Education, 86, 102882. https://doi.org/10.1016/j.tate.2019.102882

Jacobs, V. R., & Empson, S. B. (2016). Responding to children’s mathematical thinking in the moment: an emerging framework of teaching moves. ZDM, 48(1–2), 185–197. https://doi.org/10.1007/s11858-015-0717-0

Kahneman, D. (2018). Thinking, fast and slow in the classroom: A new paradigm for teaching decision-making. Educational Psychology Review, 30(4), 1387–1408.

Kaiser, G., Busse, A., Hoth, J., König, J., & Blömeke, S. (2015). About the Complexities of Video-Based Assessments: Theoretical and Methodological Approaches to Overcoming Shortcomings of Research on Teachers’ Competence. International Journal of Science and Mathematics Education, 13(2), 369–387. https://doi.org/10.1007/s10763-015-9616-7

Kaiser, G., & König, J. (2019). Competence Measurement in (Mathematics) Teacher Education and Beyond: Implications for Policy. Higher Education Policy, 32(4), 597–615. https://doi.org/10.1057/s41307-019-00139-z

Kim, D. H., Lee, J. H., Park, J., & Shin, J. S. (2017). Process-oriented evaluation of an international faculty development program for Asian developing countries: A qualitative study. BMC Medical Education, 17(1), 1–13. https://doi.org/10.1186/s12909-017-1101-2

Kleickmann, T., Richter, D., Kunter, M., Elsner, J., Besser, M., Krauss, S., & Baumert, J. (2013). Teachers’ Content Knowledge and Pedagogical Content Knowledge. Journal of Teacher Education, 64(1), 90–106. https://doi.org/10.1177/0022487112460398

Kroneberg, C., & Kalter, F. (2012). Rational Choice Theory and Empirical Research: Methodological and Theoretical Contributions in Europe. Annual Review of Sociology, 38(1), 73–92. https://doi.org/10.1146/annurev-soc-071811-145441

Lawson, H., & Jones, P. (2018). Teachers’ pedagogical decision-making and influences on this when teaching students with severe intellectual disabilities. Journal of Research in Special Educational Needs, 18(3), 196–210. https://doi.org/10.1111/1471-3802.12405

Loibl, K., Leuders, T., & Dörfler, T. (2020). A Framework for Explaining Teachers’ Diagnostic Judgements by Cognitive Modeling (DiaCoM). Teaching and Teacher Education, 91, 103059. https://doi.org/10.1016/j.tate.2020.103059

Loibl, K., Roll, I., & Rummel, N. (2017). Towards a Theory of When and How Problem Solving Followed by Instruction Supports Learning. Educational Psychology Review, 29(4), 693–715. https://doi.org/10.1007/s10648-016-9379-x

Meyer, H. (2018). Teachers’ Thoughts on Student Decision Making During Engineering Design Lessons. Education Sciences, 8(1), 9. https://doi.org/10.3390/educsci8010009

Miles, M. B., Huberman, A. M., & Saldana, J. (2018). Qualitative Data Analysis: A Methods Sourcebook. SAGE Publications.

Oerke, B., McElvany, N., Ohle-Peters, A., Horz, H., & Ullrich, M. (2019). The impact of instruction and student characteristics on the development of students’ ability to read texts with instructional pictures. European Journal of Psychology of Education, 34(2), 375–395. https://doi.org/10.1007/s10212-018-0375-z

Patton, M. Q. (2023). Qualitative Research & Evaluation Methods: Integrating Theory and Practice. SAGE Publications. https://books.google.co.id/books?id=HXitEAAAQBAJ

Praetorius, A.-K., Klieme, E., Herbert, B., & Pinger, P. (2018). Generic dimensions of teaching quality: the German framework of Three Basic Dimensions. ZDM – Mathematics Education, 50(3), 407–426. https://doi.org/10.1007/s11858-018-0918-4

Rittle-Johnson, B., Loehr, A. M., & Durkin, K. (2017). Promoting self-explanation to improve mathematics learning: A meta-analysis and instructional design principles. ZDM - Mathematics Education, 49(4), 599–611. https://doi.org/10.1007/s11858-017-0834-z

Rittle-Johnson, B., Star, J. R., & Durkin, K. (2020). How Can Cognitive-Science Research Help Improve Education? The Case of Comparing Multiple Strategies to Improve Mathematics Learning and Teaching. Current Directions in Psychological Science, 29(6), 599–609. https://doi.org/10.1177/0963721420969365

Scheiner, T., Montes, M. A., Godino, J. D., Carrillo, J., & Pino-Fan, L. R. (2019). What Makes Mathematics Teacher Knowledge Specialized? Offering Alternative Views. International Journal of Science and Mathematics Education, 17(1), 153–172. https://doi.org/10.1007/s10763-017-9859-6

Scheiter, K., Schüler, A., & Eitel, A. (2017). Learning from Multimedia: Cognitive Processes and Instructional Support. In The Psychology of Digital Learning (hal. 1–19). Springer International Publishing. https://doi.org/10.1007/978-3-319-49077-9_1

Schlesinger, L., Jentsch, A., Kaiser, G., König, J., & Blömeke, S. (2018). Subject-specific characteristics of instructional quality in mathematics education. ZDM - Mathematics Education, 50(3), 475–490. https://doi.org/10.1007/s11858-018-0917-5

Schoenfeld, A. H. (2015). How We Think: A Theory of Human Decision-Making, with a Focus on Teaching BT - The Proceedings of the 12th International Congress on Mathematical Education (S. J. Cho (ed.); hal. 229–243). Springer International Publishing.

Schukajlow, S., Kaiser, G., & Stillman, G. (2018). Empirical research on teaching and learning of mathematical modelling: a survey on the current state-of-the-art. ZDM, 50(1–2), 5–18. https://doi.org/10.1007/s11858-018-0933-5

Selling, S. K., Garcia, N., & Ball, D. L. (2016). What Does it Take to Develop Assessments of Mathematical Knowledge for Teaching?: Unpacking the Mathematical Work of Teaching. The Mathematics Enthusiast, 13(1–2), 35–51. https://doi.org/10.54870/1551-3440.1364

Sentz, J., Stefaniak, J., Baaki, J., & Eckhoff, A. (2019). How do instructional designers manage learners’ cognitive load? An examination of awareness and application of strategies. In Educational Technology Research and Development (Vol. 67, Nomor 1). Springer US. https://doi.org/10.1007/s11423-018-09640-5

Stahnke, R., & Blömeke, S. (2021). Novice and expert teachers’ situation-specific skills regarding classroom management: What do they perceive, interpret and suggest? Teaching and Teacher Education, 98, 103243.

Stahnke, R., Schueler, S., & Roesken-Winter, B. (2016). Teachers’ perception, interpretation, and decision-making: a systematic review of empirical mathematics education research. ZDM, 48(1–2), 1–27. https://doi.org/10.1007/s11858-016-0775-y

Swartz, R. J., & Perkins, D. N. (2016). Teaching Thinking: Issues and Approaches. Routledge. https://doi.org/10.4324/9781315626468

Tondeur, J., Scherer, R., Baran, E., Siddiq, F., Valtonen, T., & Sointu, E. (2019). Teacher educators as gatekeepers: Preparing the next generation of teachers for technology integration in education. British Journal of Educational Technology, 50(3), 1189–1209. https://doi.org/10.1111/bjet.12748

Weinberg, A., Wiesner, E., & Fukawa-Connelly, T. (2016). Mathematics lectures as narratives: insights from network graph methodology. Educational Studies in Mathematics, 91(2), 203–226. https://doi.org/10.1007/s10649-015-9663-6

Zhu, Y., Yu, W., & Cai, J. (2017). Understanding Students’ Mathematical Thinking for Effective Teaching: A Comparison between Expert and Nonexpert Chinese Elementary Mathematics Teachers. EURASIA Journal of Mathematics, Science and Technology Education, 14(1). https://doi.org/10.12973/ejmste/78241




DOI: https://doi.org/10.33373/pyth.v14i1.7479

Refbacks

  • There are currently no refbacks.


 Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.